
Noname manuscript No.
(will be inserted by the editor)

The Revised Practitioner’s Guide to
MDP Model Checking Algorithms

Arnd Hartmanns · Sebastian Junges · Tim Quatmann ·
Maximilian Weininger

the date of receipt and acceptance should be inserted later

Abstract Model checking undiscounted reachability
and expected-reward properties on Markov decision pro-
cesses (MDPs) is key for the verification of systems that
act under uncertainty. Popular algorithms are policy
iteration and variants of value iteration; in tool com-
petitions, most participants rely on the latter. These
algorithms generally need worst-case exponential time.
However, the problem can equally be formulated as a lin-
ear program, solvable in polynomial time. In this paper,
we give a detailed overview of today’s state-of-the-art
algorithms for MDP model checking with a focus on
performance and correctness. We highlight their funda-
mental differences, and describe various optimizations
and implementation variants. We experimentally com-
pare floating-point and exact-arithmetic implementa-
tions of all algorithms on three benchmark sets using
two probabilistic model checkers. Our results show that

This research was funded by the European Union’s Horizon 2020 re-
search and innovation programme under Marie Skłodowska-Curie
grant agreements 101008233 (MISSION) and 101034413 (IST-
BRIDGE), by the Interreg North Sea project STORM_SAFE,
by a KI-Starter grant form the Ministerium für Kultur und Wis-
senschaft NRW, and by NWO VENI grant no. 639.021.754. Sim-
ulations were performed with computing resources granted by
RWTH Aachen University under project rwth1632.

Data availability statement. The datasets generated and anal-
ysed in this study and code to regenerate them will be publicly
archived at Zenodo.

A. Hartmanns: University of Twente, Enschede, The Netherlands
E-mail: a.hartmanns@utwente.nl
S. Junges: Radboud University, Nijmegen, The Netherlands
E-mail: sebastian.junges@ru.nl
T. Quatmann: RWTH Aachen University, Aachen, Germany
E-mail: tim.quatmann@cs.rwth-aachen.de
M. Weininger: Technical University of Munich, Munich, Germany
and Institute of Science and Technology Austria, Klosterneuburg,
Austria
E-mail: mweining@ist.ac.at

(optimistic) value iteration is a sensible default, but
other algorithms are preferable in specific settings. This
paper thereby provides a guide for MDP verification
practitioners—tool builders and users alike.

Keywords Quantitative model checking · Markov
decision process · Linear programming · Value iteration ·
Policy iteration

1 Introduction

The verification of Markov decision processes (MDPs) is
crucial for the design and evaluation of cyber-physical
systems with sensor noise, biological and chemical pro-
cesses, network protocols, and many other complex sys-
tems. MDPs are the standard model for sequential deci-
sion making under uncertainty and thus at the heart of
reinforcement learning. Many dependability evaluation
and safety assurance approaches rely in some form on
the verification of MDPs with respect to temporal logic
properties. Probabilistic model checking [7,10] provides
powerful tools to support this task.

The essential MDP model checking queries are for
the worst-case probability that something bad happens
(reachability) and the expected resource consumption
until task completion (expected rewards). These are in-
definite (undiscounted) horizon queries: They ask about
the probability or expectation of a random variable up
until an event—which forms the horizon—but are them-
selves unbounded. Many more complex properties inter-
nally reduce to solving either reachability or expected
rewards. For example, if the description of something
bad is in linear temporal logic (LTL), then a product
construction with a suitable automaton reduces the LTL
query to reachability [11]. This paper sets out to deter-
mine the practically best algorithms to solve indefinite

http://orcid.org/0000-0003-3268-8674
http://orcid.org/0000-0003-0978-8466
http://orcid.org/0000-0002-2843-5511
http://orcid.org/0000-0002-0163-2152

2 Arnd Hartmanns et al.

horizon reachability probabilities and expected rewards;
our methodology is an empirical evaluation.

MDP analysis is well studied in many fields and
has lead to three main types of algorithms: value itera-
tion (VI), policy iteration (PI), and linear programming
(LP) [76]. While indefinite horizon queries are natural
in a verification context, they differ from the standard
problem of e.g. operations research, planning, and rein-
forcement learning. In those fields, the primary concern
is to compute a policy that (often approximately) opti-
mizes the discounted expected reward over an infinite
horizon where rewards accumulated in the future are
weighted by a discount factor < 1 that exponentially
prefers values accumulated earlier.

The lack of discounting in verification has vast impli-
cations. The Bellman operation, essentially describing a
one-step backward update on expected rewards, is a con-
traction with discounting, but not a contraction without.
This leads to significantly more complex termination
criteria for VI-based verification approaches [49]. Indeed,
VI runs in polynomial time for every fixed discount fac-
tor [68], and similar results are known for PI as well
as LP solving with the simplex algorithm [81]. In con-
trast, VI [15] and PI [32] are known to have exponential
worst-case behaviour in the undiscounted case.

So, what is the best algorithm for model checking
MDPs? A (weakly) polynomial-time algorithm exists
using an LP formulation and barrier methods for its
solution [19]. LP-based approaches (and their extension
to MILPs) are also prominent for multi-objective model
checking [35], in counterexample generation [37], and for
the analysis of parametric Markov chains [26]. However,
folklore tells us that iterative methods, in particular VI,
are better for solving MDPs. Indeed, variations of VI
are the default choice of all model checkers participating
in the QComp competition [22]. This uniformity may be
misleading. Indeed, for some stochastic game algorithms,
using LP to solve the underlying MDPs may be pref-
erential [5, Appendix E.4]. An application in runtime
assurance preferred PI for numerical stability [61, Sect.
6]. A toy example from [49] is a famous challenge for VI-
based methods. Despite the prominence of LP, the ease
of encoding MDPs, and the availability of powerful off-
the-shelf LP solvers, many tools did (until very recently)
not include MDP model checking via LP solvers.

With this paper, we reconsider the PI and LP algo-
rithms to investigate whether probabilistic model check-
ing focused on the wrong family of algorithms. Indeed,
a similar comparison of algorithms on the more general
model of stochastic games [64] revealed that, depending
on the considered case study, VI or SI can be preferable.1

1 The implementations used in that comparison were often
prototypical, not mature tools like we consider in this paper. Thus,

We report the results of an extensive empirical study
with two independent implementations in the model
checkers Storm [57] and mcsta [52]. We also emphasize
the question of precision and soundness. Numerical algo-
rithms, in particular ones that converge in the limit, are
prone to delivering wrong results. For VI, the recognition
of this problem has led to a series of improvements over
the last decade [13,20,31,49,54,75,77]. We show that
PI faces a similar problem. When using floating-point
arithmetic, additional issues may arise [51,80]. Our use
of various LP solvers also exhibits concerning results for
a variety of benchmarks. We therefore include results
for exact computation using rational arithmetic as well.

Limitations of this study. A thorough experimental study
of algorithms requires a carefully scoped evaluation. We
work with flat representations of MDPs that fit com-
pletely into memory (i.e. we ignore the state space ex-
ploration process and symbolic methods). We selected
algorithms that are tailored to converge to the optimal
value. We also exclude approaches that incrementally
build and solve (partial or abstract) MDPs using sim-
ulation or model checking results to guide exploration:
they are an orthogonal improvement and would equally
profit from faster algorithms to solve the partial MDPs.
Moreover, this study is on algorithms, not on their
implementations. To reduce the impact of potential im-
plementation flaws, we use two independent tools where
possible.

We consider three classes of algorithms, each with
many hyper-parameters, for example using different vari-
ant of the algorithm, different solvers and different op-
timization. Overall, this results in exponentially many
tool-configurations, and it is infeasible to run all of
these on all benchmarks. Thus, we select a representa-
tive set of benchmarks (called practitioner-set-2024 , see
below), and do not analyze all possible interactions of
hyper-parameters. Instead, we investigate each hyper-
parameter separately, choosing reasonable values for the
others, usually based on other experiments.

Contributions. This paper contributes a thorough overview
on how to model-check indefinite horizon properties on
MDPs, making MDP model checking more accessible,
but also pushing the state-of-the-art by clarifying open
questions. We provide new insights and review folklore
statements. Particular highlights are:

– a discussion of the practical guarantees of different
solution methods. We provide a new simple but chal-
lenging MDP family that leads to wrong results on all
floating-point LP solvers (Section 2.3), a discussion of
the practical impact of precision parameters in state-

the difference in performance could also be due to engineering,
not due to fundamental properties of the algorithms.

http://orcid.org/0000-0003-3268-8674

A Practitioner’s Guide to MDP Model Checking 3

of-the-art LP solvers (Section 3.2), a negative result
regarding the soundness of PI with epsilon-precise
policy evaluators (Section 4), and performance com-
parisons of floating-point precise and exact methods
(throughout Section 6).

– a description of the known classes of solution al-
gorithms for MDPs (Section 2.2), together with
various prominent optimizations and preprocessing
techniques (Section 2.4) and algorithm-specific im-
provements (Section 3 for LP and Section 4 for PI).
Further, we thoroughly evaluate of their practical
impact of these hyper-parameters (Section 6.1). This
reveals that many things which are considered opti-
mizations are not universally beneficial in practice.

– an empirical evaluation of many factors which can
affect the outcome of a comparison of algorithms,
hyper-parameters and tools. This includes using two
independent code bases for probabilistic model check-
ers (Storm and mcsta) and 10 different LP solvers.
Further, we analyze the influence of the selected
benchmark set (Section 6.2), the state ordering used
inside model checkers (Section 6.3) and the influence
of hardware (Section 6.4).

Overall, we find that there is no simple answer to the
question “What is the best algorithm for model checking
MDPs?” Depending on the considered benchmark in-
stance, different algorithms and optimizations perform
best. We summarize the insights of our empirical eval-
uation in Section 6.5, giving recommendations for how
to choose an algorithm when solving MDPs.
Differences to conference version. This paper is the jour-
nal version of [53] and essentially constitutes a complete
rewrite of that paper and renewal of its experimental
evaluation. We have made the paper more accessible by
including more explanations, examples and references.
Moreover, we widened the scope of the experimental
evaluation, including more optimizations, as well as fac-
tors such as the tolerance parameters of LP solvers, the
state ordering, or hardware. We also updated all LP
solvers to their newest versions.

Finally, we establish a new set of benchmark in-
stances called the practitioner-set-2024 . The idea of this
set is that, on the one hand, it is small enough to be
run in reasonable time on any machine, thus allowing
others to quickly compare further algorithm variants.
On the other hand, it is large enough to be structurally
diverse and include many “interesting” cases, e.g. those
where some algorithms are incorrect, where differences
between the algorithms become apparent, or where algo-
rithms have to deal with additional complications such
as maximal end components. We in particular note that
the experimental evaluation of the conference version
did not include models with nontrivial end components.

I

T

B

✓

✗

M :

t

t

b

0.1

0.9

b

0.8

0.2

t
0.5

0.5

τ

τ

Fig. 1: An example MDP

We use the practitioner-set-2024 to validate the con-
clusions drawn in the conference version, and we hope
that it will simplify the job of developers of algorithms
and tools in the future. We included the current year
“2024” in the name of our new benchmark set: We ex-
pect it to be modified and improved in the future, when
new benchmarks are constructed and new structures are
discovered to be relevant.

2 Background

We recall MDPs with reachability and reward objectives,
describe solution algorithms and their guarantees, and
address commonly used optimizations.

2.1 Markov Decision Processes

A probability distribution over a set X is a function
d : X → [0, 1] such that for all x ∈ X we have 0 ≥
d(x) ≥ 1 and

∑
x∈X d(x) = 1. We denote the set of all

probability distributions over X by DX . A Markov deci-
sion process is a probabilistic transition system model
that includes nondeterministic choices between actions
followed by probabilistic choices of successor states:

Definition 2.1 A Markov decision process (MDP) [16,
76] is a tuple M = (S,A, δ) consisting of finite sets of
states S and actions A, and a partially defined transition
function δ : S× A ⇀ DS.

The transition function δ maps enabled state-action
pairs to distributions over successor states. We overload
A to also denote the function that assigns the set of
enabled actions to every state, namely A(s) := { a |
(s, a) ∈ domain(δ) } for all s ∈ S, and we require this
set to be non-empty for all states (i.e. we require dead-
lock freedom). A Markov chain (MC) is an MDP with
|A(s)| = 1 for all s.

Example 2.1 We show an example MDP M = (S,A, δ)
in Figure 1. Its has five states, S = { I,T,B,✓,✗ }, rep-
resented by the circles. Its set of actions is A = { t, b, τ },
and each line leaving a circle represents an enabled ac-
tion of the corresponding state. We thus have A(I) =

4 Arnd Hartmanns et al.

A(B) = { t, b }, A(T) = { t }, and A(✓) = A(✗) = { τ }.
The distributions that δ maps the enabled state-action
pairs to are indicated after the solid dots; where the
dot is omitted, the distribution is a Dirac distribution,
i.e. it assigns probability 1 to a single successor state.
We have, for example, δ(B, t)(I) = 1, δ(T, t)(✓) = 0.8,
and δ(T, t)(B) = 0.2. The distributions assign probabil-
ity 0 to all successor states to which no arrow is drawn,
e.g. δ(B, t)(T) = 0. The transition function is unde-
fined for non-enabled actions; e.g. δ(I, τ) and δ(T, b) are
undefined.

M models a scenario where the player choosing the
actions can pick between two routes towards ✓: the top
route via action t and the bottom route via action b.
The top route has a good chance of bringing the player
to ✓, but this may take a while—in particular due to
the high probability of the t-transitions out of state I
to loop back to I. The bottom route, on the other hand,
is fast, but has a high risk of leading into the dead-end
✗ state instead of ✓. △

The semantics of an MDP is defined in the usual way
by means of policies and the unique probability measure
over paths which they induce. We briefly recall the
most important concepts, summarizing [11, Chapter 10]:
A (memoryless deterministic) policy—a.k.a. strategy,
adversary or scheduler—is a function π : S → A that,
intuitively, given the current state s prescribes which
action a ∈ A(s) to play [11, Definitions 10.91 and 10.96].
Applying a policy π to an MDP induces an MC Mπ [11,
Definition 10.92].

Example 2.2 Considering again the MDP in Figure 1,

an example policy is π(s) =

{
t if s ∈ {I,T,B}
τ otherwise

, which

picks the only available action τ in states ✓ and ✗

and t in all other states. Applying this strategy to the
MDP yields an MC, as all non-determinism is resolved.
Intuitively, we get the MC by removing the arrows
labelled with b from states I and B.2 △

A path in this MC is an infinite sequence ρ = s1s2 . . .
with δ(si, π(si))(si+1) > 0. Paths denotes the set of all
paths and Pπ

s denotes the unique probability measure of
Mπ over infinite paths starting in the state s, see [11,
Chapter 10.1], in particular the Excursus on Probability
Spaces and the following discussion.

Example 2.3 An example of a path through the induced
MC from Example 2.2 is ρ = I I T ✓ω. Note that it is

2 Note that [11, Definition 10.92] constructs a countably infinite
MC as it deals with general policies. In our setting, we can restrict
to memoryless deterministic policies, and thus the resulting MC
has exactly the same set of states as the original MDP.

an infinite path that cycles forever in state ✓. This path
has the probability Pπ

I [{ρ}] = 0.9 · 0.1 · 0.8 = 0.072. △

A reachability objective Popt(T) with set of target
states T ⊆ S and opt ∈ {max,min} induces a random
variable X : Paths → [0, 1] over paths by assigning 1

to all paths that eventually reach the target and 0 to
all others [11, Chapter 10.6.1]. Eopt(rew) denotes an
expected reward objective, where rew : S → Q≥0 assigns
a reward to each state. rew(ρ) :=

∑∞
i=1 rew(si) is the

accumulated reward of a path ρ = s1s2 This yields
a random variable X : Paths → Q≥0 ∪ {∞} that maps
paths to their reward [14]. For a given objective and its
random variable X, the value of a state s ∈ S is the
expectation of X under the probability measure Pπ

s of
the the MC induced by an optimal policy π from the
set of all policies Π, formally V(s) := optπ∈ΠEπ

s [X].

Example 2.4 In Fig. 1, state ✓ is marked as the target
state of a reachability objective, and hence all paths
reaching it are assigned value 1. The value of the reach-
ability objective Pmax({✓}) is the highest possible prob-
ability to reach ✓ under an optimal policy π∗. In fact, π
from Example 2.2 is an optimal policy, and it achieves a
value of 1. Intuitively, we almost surely reach ✓, because
even if action t in state T is unlucky and proceeds to B,
the path returns to I, eventually reaches T again and
has another chance of reaching the target.

We mention several technicalities: Firstly, the defini-
tion of the value of an MDP typically uses sup and inf

over the policies, rather than max and min. However,
for the objectives we consider, memoryless deterministic
policies suffice, see [11, Lemma 10.102 and 10.113] for
reachability and [18, Proposition 2] for expected reward.
Thus, as there are only finitely many of these policies, we
can equivalently use max and min. Secondly, we only al-
low rew to assign non-negative rewards. If state-rewards
are both positive and negative, the reward of a path is
not well-defined [76, Chapter 7.1.1]. Finally, we assume
that the expected reward is finite (sometimes enforced
by assuming that all policies are proper [18]); this is
without loss of generality, as states with infinite reward
can be detected by graph algorithms and removed as
part of preprocessing, see [24, Section 4.3].

2.2 Solution Algorithms

We briefly recall the classes of solution algorithms used
for computing the value of MDPs and complement them
with references to extensive descriptions and examples.

Value iteration (VI) works by iteratively updating vec-
tors of estimates, i.e. functions x : S → Q that assign to

http://orcid.org/0000-0003-3268-8674

A Practitioner’s Guide to MDP Model Checking 5

every state an estimate of the value. Given such a func-
tion, the algorithm applies so-called Bellman updates,
which intuitively execute one step of the MDP. For-
mally, for reachability and expected reward objectives,
the Bellman update is defined as
xi+1(s) = rew(s) + opta∈A(s)

∑
s′∈S

δ(s, a)(s′) · xi(s
′),

where opt is the optimization direction and in the case
of reachability objectives, the state reward rew(s) is 0
and thus can be omitted.

VI starts from an estimate-vector that is a safe under-
or over-approximation of the value. For example, for a
maximizing reachability objective we can use the under-
approximation that assigns the smallest probability 0 to
all non-target states and 1 to targets. Then, repeatedly
applying Bellman updates converges to the value in the
limit. We refer to Algorithm 5 and Example 6 in [34] for
very concrete pseudocode and an illustrative example

Many variants of VI have been developed, aiming to
improve its practical performance. We do not discuss
them here, but refer to the respective papers for Gauss-
Seidel VI [34], interval iteration [49], partial-exploration
based VI [20], sound VI [77], and optimistic VI [54].
Further, [23] surveys how VI can be applied in many
different settings, going beyond MDPs.
Linear programming (LP) [11, Chapter 10.6.1] encodes
the transition structure of the MDP and the objective
as a linear optimization problem. For every state, the
LP has a variable representing an estimate of its value.
Every state-action pair is encoded as a constraint on
these variables, as are the target set or rewards. The
unique optimum of the LP is attained if and only if
for every state its corresponding variable is set to the
value of the state. We provide an in-depth discussion of
theoretical and practical aspects of LP in Section 3.
Policy iteration (PI) computes a sequence of policies con-
verging to the optimal one. For the description, consider
an objective with optimization direction opt and ran-
dom variable over paths X. PI starts from an arbitrary
policy π0. Then we repeat the following steps:

– For every state s, compute the value in the MC
induced by πi, i.e. ps := Eπ

s [X].
– For every state s, construct a new policy πi+1 by

choosing an action that is locally optimal. Formally,
set πi+1(s) := arg opta∈A(s)

∑
s′∈S δ(s, a)(s

′) · ps′ .

We repeat these steps until πi = πi+1. The algorithm
only considers memoryless deterministic policies, of
which there are only finitely many (a number exponen-
tial in the number of states). Thus, since every iteration
strictly improves the policy, PI terminates in finite time,
having computed an optimal policy as well as its value
(namely the value in its induced MC).

0

Mn:
1

91

2

92

· · ·

· · ·

n

9n

τ

m

j

j

m

m

j

j

m

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1

1

1
2 · · ·

1
2 · · ·

Fig. 2: A hard MDP for all algorithms

We refer to Algorithm 7 and Example 7 in [34] for
very concrete pseudocode and an illustrative example,
and to [4] for a recent generic policy iteration framework
surveying and including lots of variants of the algorithm.
We further discuss practical consideration regarding PI
in Section 4.

2.3 Guarantees

Given the stakes in many application domains, we re-
quire guarantees about the relation between an algo-
rithm’s result v̄ and the true value v. First, implemen-
tations are subject to floating-point errors and impre-
cision [80] unless they use exact (rational) arithmetic
or safe rounding [51]. This can result in arbitrary differ-
ences between v̄ and v.

Second are the algorithm’s inherent properties: VI
is an approximating algorithm that converges to the
true value only in the limit. In theory, it is possible to
obtain the exact result by rounding after exponentially
many iterations [23]; in practice, this results in excessive
runtime. Instead, for years, implementations used a
naive stopping criterion that could return arbitrarily
wrong results [48]. This problem’s discovery sparked the
development of sound variants of VI [3,13,31,49,54,75,
77]. A sound VI algorithm guarantees ε-precise results,
i.e. |v − v̄| ≤ ε or |v − v̄| ≤ v · ε (absolute and relative
difference ε, respectively).

For LP and PI, the guarantees have not yet been
thoroughly investigated. Theoretically, both are exact,
but implementations are often not. We discuss the prob-
lems in detail in Sections 3 and 4 and here exemplify
the lack of guarantees using Figure 2.

Example 2.5 Figure 2 shows a more complex MDP Mn,
which is an extension of the MC introduced in Figure 2
of [48]. It is parameterized by n ∈ N, n ≥ 2, which
can be used to scale the size of the model. Mn contains
two chains of states of length n, one positive and one

6 Arnd Hartmanns et al.

Table 1: Correct results

alg. solver n≤

PI – 20

LP COPT 18
CPLEX 18
Glop 25
GLPK 24
Gurobi 18
HiGHS 22
lp_solve 28
Mosek 22
SoPlex 34

negative, each leading an absorbing state. Inside the
chains, action m moves one step forward in the chain,
but has a chance of 1

2 to return to the initial state. Using
action j immediately jumps to the end of the chain, with
a 50-50 chance of ending in the positive or the negative
state. The addition of this jump action is the difference
to the original model of [48, Figure 2].

The original MC (using only the move action) is
hard for VI because the convergence rate is extremely
slow. For example, after n iterations the estimate for
state 0 is increased for the first time, namely to (12)

n.
By adding the jump action to every state, we lay-

ered a “deceptive” decision problem on top of the slow
convergence of the original MC: Initially, using j every-
where looks like the best policy for Pmax. As updated
values slowly propagate, state-by-state, m becomes the
optimal choice in all states except 9(n− 1). Using this
optimal policy, when reaching the end of the positive
chain, we either win (reaching n) or return to the start;
and when reaching the end of the negative chain, we
have a 50-50 chance of winning or loosing. Thus, the
resulting expected probability to reach n from state 0

is 2
3 . Dually, when minimizing the value, we can choose

m in all states except (n− 1) to obtain 1
3 . △

We evaluated whether the implementations of the
algorithms, in particular of PI and LP which are exact
in theory, provide the necessary guarantees in practice.
For this, we ran the algorithms on the MDP just de-
scribed, using default settings for all tools and solvers.
Overall, for large enough n, all non-exact implemen-
tations of algorithms return incorrect results. Storm’s
exact-arithmetic engine produces correct results, though
at increased runtime.

For n = 20, naive VI with Storm and mcsta de-
liver the incorrect results (Pmin({n }),Pmax({n })) =

(0.247, 0.500) (whereas the optimal values over all poli-
cies are (13 ,

2
3), see Example 2.5). Sound VI algorithms

return ε-correct results, though at excessive runtime for
larger n. In theory, for large enough n, floating-point

sound VI cannot converge to the correct result anymore
since the estimates increase by less than floating-point
precision.

For Storm’s PI implementations and for Storm’s and
mcsta’s LP implementations using various LP solvers,
we show in Table 1 the largest n for which each method
or solver returns a ± 0.01-correct result. For larger n, PI
and all LP solvers claim ≈ (12 ,

1
2) as the correct solution;

Glop and GLPK are exceptions, as they fail only for the
Pmax({n }) at the given n, and return a wrong result
for Pmin({n }) at n ≥ 29 and 52, respectively.

2.4 Optimizations

Solving MDPs may benefit from several optimizations.
We provide an overview of those we are aware of and
that have relevance in current tools. We roughly order
the optimisations in terms of commonality and necessity:
The first four optimisations, from qualitative precompu-
tations to MEC collapsing, are commonly implemented
in probabilistic model checking (PMC) tools today or
relatively easy to implement, and in part necessary for
the correctness or termination of certain algorithms. The
later optimisations in our list are currently supported by
fewer tools and may in part significantly alter the struc-
ture of the MDP structure. Our experimental evaluation
in Section 6.1 includes all the first four optimisations
as well as essential states and bisimulation reduction.
Section 6.1.4 summarises our observations.

Qualitative precomputations [34, Section 4.1] can be used
for finding states with value 0 or (only for reachability
objectives) 1. These precomputations are often much
faster than the numerical computations for quantitative
analysis since they rely solely on the topology of the
underlying graph. Thus, tools can apply them first and
only run the numerical algorithms on the remaining
states with non-trivial values. For example, the MDP
in Fig. 1 can be solved solely by qualitative methods.

Warm starts, e.g. [40,64], may adequately initialize an
algorithm, i.e., provide prior knowledge so that the com-
putation has a good starting point. In our experiments,
we evaluate warm starts by first running VI for a limited
number of iterations and using the resulting estimate
to guess bounds on the variables in LP or a good initial
policy for PI; see Sections 3 and 4 for more details.

Optimistic VI can also be seen as interval iteration
with a VI warm start: it first performs VI to guess an
upper estimate vector that is closer to optimal. VI itself
could also benefit from prior knowledge on the value
vector, but it is unclear how to efficiently obtain such
knowledge seeing as VI is currently the go-to method
to obtain prior knowledge.

http://orcid.org/0000-0003-3268-8674

A Practitioner’s Guide to MDP Model Checking 7

Topological methods [27,6] do not consider the whole
MDP at once. Instead, they first compute a topological
ordering of the strongly connected components (SCCs).
A set S′ ⊆ S is a connected component if for all s, s′ ∈ S′,
s can be reached from s′. We call S′ strongly connected
component if it is inclusion-maximal. The values of
states in an SCC depend only on the values of states
in SCCs that come later in the topological ordering. In
particular, bottom SCCs at the end of the ordering have
a trivial value of either 0 or 1. Using this, topological
methods solve individual SCCs, building on the already
computed values of SCCs later in the topological or-
dering. Intuitively, this decreases the runtime, since the
values on the exits from an SCC have already been com-
puted precisely. Note that we can use any algorithm for
solving the individual SCCs.

Collapsing of maximal end components (MECs) [49,20]
transforms the MDP into one with equivalent values
but simpler structure. A set of states S′ ⊆ S is an end
component if there exists a policy π such that, in the
MC induced by π, from all states s ∈ S′ the probability
to reach every other state t1 ∈ S′ is positive and the
probability to reach some state t2 ∈ S\S′ is zero. We call
S′ a maximal end component if there is no superset of S′

that is an end component. After replacing every MEC
by a single state, the MDP is contracting, i.e. we almost
surely reach a target state or a state with value zero.
VI algorithms rely on this property for convergence [49,
54,77]. For PI and LP, simplifying the graph structure
before applying the solution method can speed up the
computation.

Cores [63] are subsets of states in which all paths prov-
ably remain with high probability 1−ε. Thus, a core can
be used to prove properties with ε-precision, avoiding
computations on the rest of the state space. A core
can also be computed on-the-fly, leading to partial-
exploration based algorithms [20,71]. We do not con-
sider such algorithms in our experiments, as they are
an orthogonal improvement and would equally profit
from faster algorithms to solve the partial MDPs. We
refer to [71,72] for more details and empirical compar-
isons, which in particular show that, depending on the
model structure, using partial exploration can improve
or worsen the performance.

The essential states reduction [28] computes a domina-
tion relation over the MDP’s states as a least fixed point
of the condition that state s is dominated by state t if,
for all a ∈ A(s) and all s′ such that δ(s, a)(s′) > 0, state
s′ is also dominated by state t. An essential state is a
state not dominated by any other state. Intuitively, non-
essential states reach an essential state with minimum
probability 1 in a finite number of steps. The MDP

can then be reduced to an equivalent one consisting
only of the essential states, where equivalence means the
preservation of reachability and, with a straightforward
extension, expected reward properties. The domination
relation is easy to compute, and despite the simplicity
of the underlying condition, many of the models we
consider contain far fewer essential than non-essential
states.

The never-worse relation (NWR) [78] can similarly be
used to merge states that behave equivalently. A state s

is never worse than a state s′ if the value of s is at least
that of s′, independent of the actual transition proba-
bilities δ(s, a)(s′). As such, the analysis is based only
on the graph structure of the MDP. States that are mu-
tually never worse form an equivalence class, and thus
can be merged without changing the value of the MDP.
Further, the NWR allows identification and removal
of some suboptimal actions. Using qualitative precom-
putations, collapsing MECs, and reducing to essential
states are all special cases of merging states that form
an equivalence class with respect to the NWR. However,
computing the whole NWR is coNP-complete. Thus,
the simpler special cases remain practically relevant; we
are not aware of PMC tools implementing the full NWR
and therefore do not consider it in our experiments.

Game-based abstraction [62] reduces the size of the state
space by computing an abstraction of the MDP. This
abstraction takes the form of a turn-based stochastic
game. As we focus on methods for solving MDPs, not
stochastic games, we do not consider this optimization in
our experimental evaluation. Still, using the abstraction-
refinement loop provided in [62] and then employing
efficient algorithms for stochastic games, cf. [64], is an
interesting direction of future work.

Partial order reduction [25, Chapter 6] is a well-established
technique in verification to reduce the size of a model.
It exploits the observation that models in higher-level
modelling languages are typically defined as a compo-
sition of concurrently executing modules, and that the
order of independently-performed transitions often does
not matter. Then, keeping one representative for all pos-
sible orderings suffices, and many transitions—as well
as the states that only they lead to—can be removed.
Partial order reduction has been extended to probabilis-
tic systems [8,9,29], where more restrictive conditions
apply than in the traditional non-probabilistic setting.
Prototype implementations showed significant reduction
potential for certain models [41], but no widely-used
PMC tool today offers partial-order reduction. We thus
do not include this technique in our experiments.

Bisimulation minimization [67] merges states with equiv-
alent behavior, potentially allowing for a significant state

8 Arnd Hartmanns et al.

space reduction. Intuitively, two states s, t ∈ S are bisim-
ilar, written s ∼ t, if they can mimic each others tran-
sitioning behaviour. Formally, assuming a reachability
objective Popt(T), bisimilarity ∼ is defined as the coars-
est equivalence relation R ⊆ S × S such that (s, t) ∈ R

iff s ∈ T ⇐⇒ t ∈ T and for all actions a ∈ A(s) there
is an action b ∈ A(t) such that for all equivalence classes
C ∈ S/R:

∑
s′∈C δ(s, a)(s′) =

∑
t′∈C δ(t, b)(t′). For ex-

pected reward objectives, bisimilar states additionally
need to yield the same reward value. The quotient MDP
M/∼ merges bisimilar states, i.e., its state-space co-
incides with the equivalence classes of ∼. Since this
merging preserves objective values, one can solve the
(potentially much smaller) quotient MDP instead of the
original model. The relation ∼ can be computed using
a partition refinement algorithm. Our experiments in
Section 6.1.4 consider a symbolic implementation using
a MTBDD-based representation of the MDP M [56].

3 Solving MDPs with Linear Programs

This section considers the LP-based approach to solv-
ing the optimal policy problem in MDPs. To the best
of our knowledge, this is the only known polynomial-
time approach. We discuss various configurations. These
configuration are a combination of the LP formulation
and the choice of LP solver implementations and their
hyperparameters.

3.1 How to Encode MDPs as LPs?

For objective Pmax(T) we formulate the following LP
over variables xs, s ∈ S \ T:

minimize
∑
s∈S

xs

such that lb(s) ≤ xs ≤ ub(s) (for all s ∈ S)
xs = 1 (for all s ∈ T)

xs ≥
∑
s′∈S

δ(s, a)(s′) · xs′

(for all s ∈ S \ T, a ∈ A(s).)

We assume bounds lb(s) = 0 and ub(s) = 1 for
s ∈ S\T. The unique solution η : {xs | s ∈ S\T } → [0, 1]

to this LP coincides with the desired objective values
η(xs) = V (s) [11, Theorem 10.105]. Objectives Pmin(T)
and Eopt(rew) have similar encodings: minimizing poli-
cies require maximization in the LP and flipping the con-
straint relation. Rewards can be added as an additive fac-
tor on the right-hand side. We exemplify these changes
by also providing the LP for the objective Emin(rew)
(where ub(s) can be infinite or approximated using [13,

Section 3.3]).

maximize
∑
s∈S

xs

such that lb(s) ≤ xs ≤ ub(s) (for all s ∈ S)
xs = 0 (for all s ∈ T)

xs ≤ rew(s) +
∑
s′∈S

δ(s, a)(s′) · xs′

(for all s ∈ S, a ∈ A(s))

The choice of bounds. Any variable bounds that respect
the unique solution will not change the answer. That
is, any lb and ub with 0 ≤ lb(s) ≤ V (s) ≤ ub(s) yield
a sound encoding. While these additional bounds are
superfluous, they may significantly prune the search
space. We investigate trivial bounds, e.g., knowing that
all probabilities are in [0, 1], bounds from a structural
analysis as discussed by [13], and bounds induced by
a warm start of the solver. For the latter, if we have
obtained values V ′ ≤ V , e.g., induced by a suboptimal
policy, then V ′(s) is a lower bound on the value xs,
which is particularly relevant as the LP minimizes.
Equality for unique actions. Markov chains, i.e., MDPs
where |A| = 1, can be solved using linear equation sys-
tems. The LP encoding uses one-sided inequalities and
the objective function to incorporate nondeterministic
choices. We investigate adding constraints for all states
with a unique action, i.e. for all s ∈ S \T with |A(s)| = 1

we add (calling the unique action a in every state):

xs ≤
∑

s′∈S\T

δ(s, a)(s′) · xs′ +
∑
t∈T

δ(s, a)(t)

These additional constraints may trigger different opti-
mizations in a solver, e.g., some solvers use Gaussian
elimination for variable elimination.
A simpler objective. The standard objective assures the
solution η is optimal for every state, whereas most in-
vocations require only optimality in some specific states
– typically the initial state s0 or the entry states of a
strongly connected component. In that case, the objec-
tive may be simplified to optimize only the value for
those states. This potentially allows for multiple optimal
solutions: in terms of the MDP, it is no longer necessary
to optimize the value for states that are not reached
under the optimal policy.
Encoding the dual formulation. Encoding a dual formu-
lation to the LP is interesting for mixed-integer exten-
sions to the LP, relevant for computing, e.g., policies
in POMDPs [65], or when computing minimal coun-
terexamples [79]. For LPs, due to the strong duality, the
internal representation in the solvers we investigated is
(almost) equivalent and all solvers support both solving
the primal and the dual representation. We therefore do
not further consider constructing them.

http://orcid.org/0000-0003-3268-8674

A Practitioner’s Guide to MDP Model Checking 9

3.2 How to Solve LPs with Existing Solvers?

We rely on the performance of state-of-the-art LP solvers.
Many solvers have been developed and are still actively
advanced, see [2] for a recent comparison on general
benchmarks. We list the LP solvers that we consider
for this work in Table 2. The columns summarize for
each solver the type of license, whether it uses exact
or floating-point arithmetic, whether it supports multi-
threading, and what type of algorithms it implements.
We also list whether the solver is available from the two
model checkers used in this study3.

Methods. We briefly explain the available methods and
refer to [19] for a thorough treatment as well as to the
introduction of [1] for recent developments. Broadly
speaking, the LP solvers use one out of two families of
methods. 1) Simplex -based methods rely on highly effi-
cient pivot operations to consider vertices of the simplex
of feasible solutions. Simplex can be executed either in
the primal or dual fashion, which changes the direction
of progress made by the algorithm. Our LP formulation
has more constraints than variables, which generally
means that the dual version is preferable. 2) Interior
methods, often the subclass of barrier methods, do not
need to follow the set of vertices. These methods may
achieve polynomial time worst-case behaviour. Folklore
claims that simplex has superior average-case perfor-
mance but is highly sensitive to perturbations, while
interior-point methods have a more robust performance.

Warm starts. LP-based model checking can be done using
two types of warm starts. Either by providing a (feasible)
basis point as done in [40] or by presenting bounds
as discussed above. The former, however, comes with
various remarks and limitations, such as the requirement
to disable preprocessing. We therefore used warm starts
only by using bounds.

Multithreading. We generally see two types of paralleli-
sation in LP solvers. Some solvers support a portfolio
approach that runs different approaches and finishes
with the first one that yields a result. Other solvers
parallelize the interior-point and/or simplex methods
themselves.

Guarantees for numerical LP solvers. All LP solvers
allow tweaking of various parameters, including toler-
ances to manage whether a point is considered feasible
or optimal, respectively. The experiments on the Mn

model of Example 2.5 shown in Table 1 already indicate
that these guarantees are not absolute. We have inves-
tigated the influence of the primal feasibility tolerance

3 Support for Gurobi, GLPK, and Z3 was already available in
Storm. Support for Glop was already available in mcsta. All other
solver interfaces have been added for [53].

Table 3: Correct results on Mn depending on tolerances

Gurobi HiGHS

tolerances Pmin Pmax Pmin Pmax

10−4 n ≤ 12 n ≤ 12 n ≤ 12 n ≤ 12
10−5 n ≤ 15 n ≤ 15 n ≤ 15 n ≤ 15
10−6 n ≤ 18 n ≤ 18 n ≤ 18 n ≤ 18
10−7 n ≤ 22 n ≤ 22 n ≤ 22 n ≤ 22
10−8 n ≤ 25 n ≤ 25 n ≤ 25 n ≤ 25
10−9 n ≤ 28 n ≤ 28 n ≤ 28 n ≤ 28

and dual feasibility tolerance parameters of Gurobi and
HiGHS as called from mcsta on the correctness using the
same model. We chose Gurobi and HiGHS as they are the
fastest and fastest open-source LP solvers, respectively,
in our experimental evaluation in Section 6. The results
are shown in Table 3. We set both tolerances to the
same value indicated in the “tolerances” column. Gurobi
accepts values in [10−9, 10−2] and uses a default of 10−6;
HiGHS accepts values in [10−10,∞) and uses a default of
10−7. For each combination of tolerance values, solver,
and property, we again write n ≤ value to report that
this combination delivered correct results (i.e. within
±0.01 of the correct value; wrong values were in fact
always equal or very close to 0.5) for all values of n up
to and including value.

We see that the correctness on the Mn model for
these two solvers appears to depend only on the toler-
ance values, with no differences between the two solvers
otherwise. The difference between Gurobi and HiGHS in
Table 1 can be fully explained by the difference in their
default tolerances (highlighted in bold in Table 3). For
every tolerance setting, there is an n that causes incor-
rect results; given a required result precision, it is not
possible to derive a model-independent tolerance that
would guarantee correct results up to that precision.

Exact solving. SoPlex supports exact computations, with
a Boost library wrapping GMP rationals [36], after a
floating-point arithmetic-based startup phase [42]. While
this combination is beneficial for performance in most
settings, it leads to crashes for the numerically chal-
lenging models. Z3 supports only exact arithmetic (also
wrapping GMP numbers with their own interface). We
observe that the price of converting large rational num-
bers may be substantial. SMT solvers like Z3 use a
simplex variation [30] tailored towards finding feasible
points and in an incremental fashion, optimized for
problems with a nontrivial Boolean structure. In con-
trast, our LP formulation is easily feasible and a pure
conjunction.

10 Arnd Hartmanns et al.

Table 2: Available LP solvers (“intr” = interior point)

solver version license exact/fp parallel algorithms mcsta Storm

COPT [38] 7.1.3 academic fp yes intr+ simplex yes no
CPLEX [59] 22.1.1.0 academic fp yes intr+ simplex yes no
Gurobi [47] 11.0.0 academic fp yes intr+ simplex yes yes
GLPK [44] 5.0 GPL fp no intr+ simplex no yes
Glop [45] 9.10 Apache fp no simplex only yes no
HiGHS [50,58] 1.7.0 MIT fp yes intr+ simplex yes no
lp_solve [17] 5.5.2.11 LGPL fp no simplex only yes no
Mosek [73] 10.2 academic fp yes intr+ simplex yes no
SoPlex [43] 7.0.1 academic both no simplex only no yes
Z3 [74] 4.13.0 MIT exact no simplex only no yes

s0 s1

s2 g

s3
a

b

τ

0.1

0.9

τ δ/2

δ/21−δ

τ

τ

Fig. 3: Example MDP

4 Sound Policy Iteration

Starting with an initial policy, PI-based algorithms it-
eratively improve the policy based on the values ob-
tained for the induced MC. The algorithm for solving
the induced MC crucially affects the performance and
accuracy of the overall approach. This section addresses
possible correctness issues and some algorithmic choices.

4.1 Correctness of PI

The accuracy of PI is affected by the MC solver. Firstly,
PI cannot be more precise than its underlying solver:
the result of PI has the same precision as the result
obtained for the final MC. Secondly, inaccuracies by the
solver can hide policy improvements; this may lead to
premature convergence with a sub-optimal policy.

Theorem 4.1 When running Policy Iteration with an
ε-precise solver for the induced Markov chains, the result
of the overall algorithm can be off by more than ε.

Proof Consider the MDP in Figure 3 with reachability
objective Pmax({ g }). There is only one nondeterministic
choice, namely in state s0. The optimal policy is to pick
b, obtaining a value of 0.5. Picking a only yields 0.1.
However, when starting from the initial policy π(s0) = a,
an ε-precise MC solver may return 0.1+ε for both s0 and
s1 and δ/2 + (1− δ) · 0.1 for s2. This solution is indeed
ε-precise. However, when evaluating which action to
pick in s0, we can choose δ such that a seems to obtain
a higher value. Concretely, we require δ/2 + (1 − δ) ·
0.1 < 0.1 + ε. For every ε > 0, this can be achieved
by setting δ < 2.5 · ε. In this case, PI would terminate
with the policy π0 inducing a severely suboptimal value.
In particular, for ε < 0.4, the result is not ε-precise.
Note that the example can be modified to increase the
distance between initial and optimal policy. ⊓⊔

If every Markov chain is solved precisely, PI is cor-
rect. Indeed, it suffices to be certain that one action is

better than all others. This is the essence of modified
policy iteration as described in [76, Chapters 6.5 and
7.2.6]. Similarly, [64, Section 4.2] suggests to use interval
iteration when solving the system induced by the cur-
rent policy and stopping when the under-approximation
of one action is higher than the over-approximation of
all other actions.

4.2 PI Implementations

Warm starts. PI profits from being provided a good
initial policy. If the initial policy is already optimal, PI
terminates after a single iteration. We can inform our
choice of the initial policy by providing estimates for all
states as computed by VI. For every state, we choose the
action that is optimal according to the estimate. This
is a good way to leverage VI’s ability to quickly deliver
good estimates [54], while at the same time providing
the exactness guarantees of PI.

Markov chain solvers. To solve the induced MC, Storm
can employ all linear equation solvers listed in [57] and
all implemented variants of VI. We consider

– iterative solvers from GMM++ [39], i.e., the bicon-
jugate gradient stabilised method (bigcstab), the
generalized minimal residual method (gmres), and
the quasi-minimal residual method (qmr), each po-
tentially combined with a diagonal (diag) or an in-
complete LU4 (ilu) preconditioner,

– VI [23] with standard relative termination criterion,
– optimistic VI (OVI) [54], and
– the sparse LU decomposition implemented in Eigen [46]

using either floating-point or exact arithmetic (LUX).

LU and LUX provide exact results (modulo floating-
point errors in LU) while OVI yields ε-precise results.
The other solvers do not provide any guarantees.

4 LU refers to Lower unitriangular and Upper triangular de-
composition of a matrix.

http://orcid.org/0000-0003-3268-8674

A Practitioner’s Guide to MDP Model Checking 11

The topological approach discussed for MDPs in
Section 2.4 can also be applied as an optimisation for
the Markov chain solvers, since applying a strategy can
change the underlying graph structure and hence the
SCC-decomposition. Consequently, topological optimi-
sations for PI can be applied in three different variants

– decompose the MDP into its SCCs and analyse them
monolithically (topo+mono),

– decompose the induced MCs into their SCCs and
analyse them (mono+topo),

– apply topological optimisations for both the MDP
and the induced MCs (topo+topo).

In our experiments in Section 6.1.3 we analyse the per-
formance of the different Markov chain solvers and topo-
logical variants.

5 Experimental setup

To understand the practical performance of the different
algorithms, we performed an extensive experimental
evaluation. Before we present its results in Section 6,
we describe the experimental setup, in particular the
selection of benchmark sets as well as the methods used
for analyzing the collected data, in this section. Our
data availability statement at the beginning of the paper
links to an artifact containing all benchmarks and tools
used as well as all logs created for this study.

5.1 Technical Setup

The bulk of our experiments were performed on In-
tel Xeon 8468 Sapphire systems running 64-bit Rocky
Linux 8.9. We used the Slurm workload manager to
allocate 4 CPU cores and 16 GB of RAM to each exper-
iment. We explicitly note where deviate from this setup,
notably in our analyses of the influence of threads in
Section 6.1.2 and of hardware effects in Section 6.4.

5.2 Tool Configurations

A tool configuration results from choosing an algorithm
(e.g. LP) and a specific variant thereof (e.g. the sim-
plex algorithm) as well as all further hyper-parameters,
including algorithm-specific optimizations (e.g. using
equality constraints where possible), general optimiza-
tions (e.g. using topological methods), and technical
decisions (e.g. the number of threads used, or whether
we use Storm’s or mcsta’s implementation of the algo-
rithm and optimizations).

The number of tool configurations is exponential in
the number of hyper-parameters; given the parameters

that we consider, it is infeasible to run all possible con-
figurations on all benchmarks. We therefore investigate
each hyper-parameter separately, choosing reasonable
values for the others that are determined based on other
experiments. Every subsection of Section 6 will make
it clear which algorithms and hyper-parameters it con-
siders. Throughout the experiments, the model checker
used in a specific configuration is indicated by the sub-
scripts s for Storm and m for mcsta.

5.3 Benchmark Sets

An evaluation depends heavily on the selected bench-
marks. To make this dependency transparent, we con-
sider several benchmark sets, each of which consists of
a number of benchmark instances: combinations of a
model, a valuation for the model’s parameters, and an
objective to analyse. In the following, we first describe
the base sets, i.e. the origin of our benchmark instances.
These are qvbs, mecs, and gridworlds. All three of these
sets together form the alljani set, named for the fact
that all its instances are available in the JANI modelling
language [21]. From them, we select a representative sub-
set, the practitioner-set-2024 . Finally, we describe the
separate premise set.

qvbs set. These are all benchmark instances from the
Quantitative Verification Benchmark Set (QVBS) [55]
that satisfy the following basic criteria: They have an
MDP, Markov automaton (MA), or probabilistic timed
automaton (PTA) model5 and a reachability or expected
reward/time objective that is quantitative, i.e. not a
query that yields a zero or one probability. We only
consider instances where both Storm and mcsta can
build the explicit representation of the MDP within 5
minutes. This yields 366 instances. We obtain reference
results for 341 of them from either the QVBS database
or by using one of Storm’s exact methods. The reference
results obtained via different methods are consistent.

gridworlds set. This is a set of gridworlds that have been
previously investigated and that were colloquially known
to be hard. We collected 2-dimensional grid worlds with
and without moving obstacles from a gridworld reposi-
tory with partially observable MDPs originally presented
in [60] and took the underlying (fully observable) MDP.6

We additionally take a gridworld from [61] that differs
from the other benchmarks in the movement dynamics,
and a random walk model that is interesting for its

5 MA and PTA are converted to MDP via embedding and
digital clocks [66].

6 Notice that these benchmarks are partially similar to the
original MDPs from [61] before their (significant) transformation
that yields the premise set.

12 Arnd Hartmanns et al.

concise representation of N-dimensional random walks.
All benchmarks are scalable along multiple dimensions.
We include 27 instances that compute the maximal
probability to reach a specific goal and 20 instances for
the minimal expected number of steps until a target
state is reached. For 30 out of those 47 instances, a
reference result was obtained using one of Storm’s exact
methods. Most instances include non-trivial MECs, but
within this benchmark set, only the maximal probability
instances have MECs that affect convergence.
mecs set. This is a set of models explicitly collected to in-
clude MDPs containing non-trivial (i.e. not target, sink,
or single-state) MECs. This is important because many
algorithms explicitly include methods for dealing with
them, but neither qvbs nor premise contain MDPs with
non-trivial MECs. The set mecs includes the instances
from gridworlds exhibiting MECs, namely the avoid-
MDP and evade-MDP models. Additionally, we include
the models sensors, mer [33], and the handcrafted ex-
treme cases BigMEC and MulMEC (turned into MDPs
by merging the players of their original stochastic game
formulations) from [64]. Moreover, we extended the two
qvbs models consensus and wlan with MECs by putting
the original models’ behaviour in parallel composition
with an (ineffective) looping structure that, in each step
and with uniform probability, sets a variable x to either
x + 1 mod 10 or 0. All in all, the mecs contains 36
instances: 21 with maximum probability and 15 with
minimum expected reward objectives. A reference result
is available for 24 instances.
practitioner-set-2024. This benchmark set is a selection
of instances from the alljani set chosen to be

– concise: we want the set to contain a limited number
of instances so that evaluating different configura-
tions of an algorithm on this set remains feasible,

– diverse: we want diversity with respect to model
structure,

– non-trivial : we want non-trivial runtimes that are
robust to noise but fast enough to ensure a reasonable
total runtime, and

– representative: we want the set to be representative
of the whole set of benchmarks that we are aware of.

We used the following selection process: First, to obtain
data on how easy or hard benchmarks are for certain
algorithms, we ran a subset of algorithms on all instances
of the alljani set. We in particular ran at least one
variant of each class of algorithm (naive and sound VI,
PI, and LP), namely the one that performed best in the
conference version of this paper [53]. Then, we restricted
to the benchmark instances where at least one algorithm
took more than 5 seconds (so that instances are non-
trivial) and at least one algorithm succeeded in less

than 120 seconds (to exclude models that take too long,
supporting conciseness). The resulting set contained 144
benchmark instances.

We selected 80 benchmark instances such that eval-
uating one algorithm on all of them is expected to take
less than 2 hours. To arrive at this number, we man-
ually removed benchmark instances to reduce the size
of the set and to avoid certain models for which many
parameter valuations survived our initial filtering7 being
overrepresented. Hence, we included 12 instances from
mecs, ensuring that these relevant structures are present.
Further, we selected 50 instances from qvbs, thus in-
cluding structures appearing in the more realistic case
studies. The final 18 instances are from gridworlds. Ad-
ditionally, we ensured that the set is balanced between
reachability and total reward objectives (35 reachability,
45 reward). 71 instances have a reference result.
premise set. This is a set of numerically challenging mod-
els from a runtime monitoring application [61], named
for the corresponding prototype. The original problem is
to compute the normalized risk of continuing to operate
the system being monitored subject to stochastic noise,
unobservable and uncontrollable nondeterminism, and
partial state observations. This is a query for a con-
ditional probability, answered via probabilistic model
checking by unrolling an MDP model along an observed
history trace of length n ∈ { 50, . . . , 1000 } following the
approach of Baier et al. [12]. The MDPs contain many
transitions back to the initial state, ultimately resulting
in numerically challenging instances (containing struc-
tures similar to the one of Mn in Section 2.3). We were
able to compute a reference result for all 200 instances.

We separately analyse the premise set and do not
include it in the practitioner-set-2024 because, due to
their origin, the MDPs of the premise set are explicitly
represented while we wanted the practitioner-set-2024
to include only models specified in JANI for the purpose
of cross-tool compatibility.

5.4 Data Analysis

Collected data. For each run of an algorithm on a bench-
mark instance, we save the runtime. The runtime in-
cludes necessary and/or stated preprocessing, but not
the time for constructing the MDP state space (which is
independent of the algorithms). mcsta reports all time
measurements rounded to multiples of 0.1 s. We sum-
marize timeouts, out-of-memory failures, errors, and

7 For example, there were 10 instances of the zeroconf model
that satisfied the initial filter. We reduced this to 5 instances
by picking at least one representative of every model-objective
combination, but using only a subset of the parameter values,
typically the largest and smallest.

http://orcid.org/0000-0003-3268-8674

A Practitioner’s Guide to MDP Model Checking 13

incorrect results as “n/a”. Throughout most of our eval-
uation, the timeout is 15 minutes for total runtime
including MDP construction. For the hardware and LP
tolerances experiments, we reduced the timeout to 10
minutes.

We define incorrectness as follows: A result v̄ is
incorrect if |v − v̄| > v · 10−3 (i.e. a relative error of
± 10−3) whenever a reference result v is available. We
however do not flag a result as incorrect if v and v̄ are
both below 10−8 (relevant for the premise set), except in
the LP tolerances experiment. Nevertheless, we configure
the (unsound) convergence threshold for VI as 10−6

relative; among the sound VI algorithms, we include
OVI, with a (sound) stopping criterion of relative 10−6

error. To only achieve the 10−3 precision we actually
test, OVI could thus be even faster than it appears in
our plots. We make this difference to account for the
fact that many algorithms, including the LP solvers,
do not have a sound error criterion. We mark exact
algorithms/solvers that use rational arithmetic with a
superscript X. The other configurations use floating-
point arithmetic (fp).
Data analysis methods. To compare the algorithms, we
use several methods, each of which has its own strengths
and weaknesses.

– Quantile plots (e.g. top left of Fig. 4) compare multi-
ple tool configurations; for each, we sort the instances
by runtime and plot the corresponding monotoni-
cally increasing line. Here, a point (x, y) on the a-
line means that the x-th fastest instance solved by
a took y seconds. These plots provide an overview
of algorithm performance on the whole set, but hide
performance on separate instances due to ordering
them for each algorithm separately.

– Scatter plots compare two tools or configurations (e.g.
top right of Fig. 4; note that only this scatter plot
contains the legend indicating what the shapes and
colours of the points mean). Each point (x, y) is for
one benchmark instance: the x-axis tool took x while
the y-axis tool took y seconds to solve it. The shape
of points indicates the model type; the mapping from
shapes to types is the same for all scatter plots and
is only given explicitly in the first one in Fig. 6. The
dashed lines around the solid line indicate the points
where one tool is exactly twice as fast as the other.
Intuitively, if most points are above the diagonal,
the x-axis tool configuration is faster, and dually the
y-axis tool configuration if most points are below
the diagonal. These plots allow for comparing the
performance on individual benchmark instances, but
if there are many points both above and below the
diagonal, it is difficult to draw conclusions. Further,
they can only compare two tool configurations and

are thus not suitable for getting an overview of larger
numbers of configurations.

Note that the y-axis of both the quantile and scatter
plots is logarithmically scaled. This allows assessing
the relative performance of the algorithms for different
benchmark sizes. Further, we highlight that the scatter
plots depict all runtimes between 512 seconds and our
timeout of 15 minutes (900 seconds) on the ≥ 512 line.
Benchmarks on this line are solved (albeit in a long
time), in stark contrast to the n/a lines where the result
was incorrect or an error happened.

Finally, for clarity and succinctness of presentation,
we do not show all plots which a reader might be in-
terested in, restricting to those that we consider most
relevant. We refer to our artifact (see the data availabil-
ity statement at the beginning of the paper) for the full
logs of our evaluation which allow for further analysis.

6 Experimental evaluation

In this section, we provide the results of our experi-
mental evaluation. First, in Section 6.1, we individually
study all hyper-parameters we consider, looking into
the variants of each class of algorithm (VI, LP, and PI)
separately, and then discussing the optimizations de-
scribed in Section 2.4. We then investigate factors other
than algorithm selection that can affect the result of an
empirical comparison, namely benchmark selection (Sec-
tion 6.2), state ordering (Section 6.3), and differences in
hardware (Section 6.4). Finally, Section 6.5 discusses all
the results and provides clear take-away messages from
our extensive analysis.

6.1 Hyper-Parameter Analysis

This subsection analyses many different tool configura-
tion (cf Section 5.2). To make this feasible, we restrict
to the 80 instances of the practitioner-set-2024 (cf. Sec-
tion 5.3). Using this more structurally diverse set is
an improvement over the conference version of this pa-
per [53] which used the qvbs set.

6.1.1 Value Iteration

VI variants. The quantile plot in Fig. 4 shows the overall
results for the different variants of the algorithm, namely
standard VI, optimistic VI [54], sound VI [77], interval
iteration [49] and the exact variant of VI called rational
search [69]. We tested two implementations of each
algorithm, one in Storm (lighter colour) and one in
mcsta (darker colour), except for rational search which
mcsta does not implement.

14 Arnd Hartmanns et al.

0 10 20 30 40 50 60 70 80
0.1

1

10

100 VIs
VIm
OVIs
OVIm
SVIs
SVIm
IIs
IIm
RSX

s

2 4 8 16 64 256

2
4
8

16
32
64

≤1 n/a
≤1

≥512

VIs

V
I m

MA PTA MDPqvbs

MDPmec MDPgrid MDPmec
grid

2 4 8 16 64 256

2
4
8

16
32
64

≤1 n/a
≤1

≥512

OVIs

O
V

I m

2 4 8 16 64 256

2
4
8

16
32
64

≤1 n/a
≤1

≥512

OVIs

SV
I s

2 4 8 16 64 256

2
4
8

16
32
64

≤1 n/a
≤1

≥512

OVIs

II
s

Fig. 4: Comparison of VI-based methods.

In terms of performance, naive VI is the fastest
while the rational search is the slowest, the latter only
being able to solve 25 instances within the given time.
For the VI variants that provide ε-precise results and use
floating-point arithmetic, there is no clear winner. OVIs
and IIs solve the most instances (77), but the scatter
plots show that there are benchmark instances where
other algorithm variants are preferable. In particular,
the implementation of algorithms (VIs vs. VIm or OVIs
vs. OVIm) has an impact that is comparable to that of
switching the algorithm variant (OVIs vs. SVIs and OVIs
vs. IIs). This adds a nuance to claims in [54,77] where
OVI and SVI seemed clearly preferable to II; possibly,
those results were due to inefficient implementations or
due to a different selection of benchmarks.

In terms of reliability, naive VI produced 5 and
7 wrong results in Storm and mcsta, respectively. OVI,
SVI and II had no incorrect results in Storm, but 2,
13, and 12, respectively, in mcsta8. Of course, RSX

s was
always correct.
Optimizations. We discuss the effects of the commonly
implemented optimizations described in Section 2.4. The
top row of Fig. 5 shows the effect of enabling the quali-
tative precomputations in mcsta9. Quite surprisingly,

8 We believe this to be at least partly due to bugs in mcsta’s
MEC-collapsing implementation that we are working to fix.

9 Recall that Storm does not allow turning these precomputa-
tions off.

the precomputations appear to consistently worsen the
performance on some benchmark instances.

The second row of Fig. 5 shows the effect of using the
topological optimization (which, for VI algorithms,
only Storm offers). For OVI and RSX , it significantly
improves the performance on many benchmarks. In-
terestingly, for VI, the scatter plot is more mixed with
several benchmark instances from the mec and gridworld
sets being more than 30 times slower. We conjecture
that Storm’s implementation is inefficient in handling
these models because they contain many (small) SCCs.

The last row of Fig. 5 shows the effect of using
MEC collapsing. Recall from Section 2.4 that collaps-
ing MECs is necessary for the convergence of the sound
VI algorithms. We see this in the bottom right scatter
plot: several mecs benchmarks do not terminate using
OVI, but do when using OVI-mec. The RSX algorithm
always uses MEC-collapsing for this reason. The over-
head for searching MECs can (mostly negatively) affect
the runtime on instances that do not exhibit any (non-
trivial) MECs, as is visible by all points in the scatter
plots that are not from the mecs ∗ or gridworld-mecs ⊗
sets. Interestingly, MEC collapsing in Storm slows down
the solving of several instances from the mecs set, while
in mcsta, both VI and OVI generally benefit from this
preprocessing if the models contain MECs.

http://orcid.org/0000-0003-3268-8674

A Practitioner’s Guide to MDP Model Checking 15

2 4 8 16 64 256

2
4
8

16
32
64

≤1 n/a
≤1

≥512

VIm

V
I-

P
r0

m

2 4 8 16 64 256

2
4
8

16
32
64

≤1 n/a
≤1

≥512

VIm

V
I-

P
r1

m

2 4 8 16 64 256

2
4
8

16
32
64

≤1 n/a
≤1

≥512

VIm

V
I-

P
r0

1 m

2 4 8 16 64 256

2
4
8

16
32
64

≤1 n/a
≤1

≥512

VIs

V
I-

to
p
o s

2 4 8 16 64 256

2
4
8

16
32
64

≤1 n/a
≤1

≥512

OVIs

O
V

I-
to

p
o s

2 4 8 16 64 256

2
4
8

16
32
64

≤1 n/a
≤1

≥512

RSX
s

R
S-

to
p
oX s

2 4 8 16 64 256

2
4
8

16
32
64

≤1 n/a
≤1

≥512

VIm

V
I-

m
ec

m

2 4 8 16 64 256

2
4
8

16
32
64

≤1 n/a
≤1

≥512

VIs

V
I-

m
ec

s

2 4 8 16 64 256

2
4
8

16
32
64

≤1 n/a
≤1

≥512

OVIm

O
V

I-
m

ec
m

Fig. 5: Comparison of optimizations on different VI-based methods and implementations.

Table 4: LP summary

solver correct incorr. no result

VIs 74 5 1
VIm 72 7 1
COPTm 44 1 35
CPLEXm 28 1 51
Glopm 19 0 61
GLPKs 7 0 73
Gurobis 47 1 32
Gurobim 45 1 34
HiGHSm 38 1 41
lp_solvem 6 0 74
Mosekm 32 0 48
SoPlexs 11 1 68
SoPlexXs 10 0 70
Z3Xs 1 0 79

6.1.2 Linear Programming

LP solvers. First, we compare different LP solvers. We
apply no optimizations or reductions to the MDPs ex-
cept for the precomputation of probability-0 states (and
in Storm also of probability-1 states), and use the default
settings for all solvers, with the trivial variable bounds
[0, 1] and [0,∞) for probabilities and expected rewards,
respectively. We include VI as a baseline. We summarize
the results in Table 4 and Fig. 6 (left).

In terms of performance and scalability, Gurobi
solves the highest number of benchmarks in any given
time budget, closely followed by COPT. CPLEX, HiGHS,
and Mosek make up a middle-class group. While the
exact solver Z3 is very slow, SoPlex’s exact mode actually
competes with some fp solvers. However, the quantile
plots do not tell the whole story: On the right of Fig. 6,
we compare COPT and Gurobi directly and see that each

16 Arnd Hartmanns et al.

0 10 20 30 40 50 60 70 80
0.1

1

10

100

VIs VIm Gurobis
Gurobim COPTm HiGHSm

Mosekm CPLEXm Glopm

SoPlexs SoPlexXs GLPKs

lp_solvem Z3Xs

2 4 8 16 64 256

2
4
8

16
32
64

≤1 n/a
≤1

≥512

Gurobim

C
O

P
T

m

Fig. 6: Comparison of LP solver runtime on the community set.

has a large number of instances on which it is (much)
better.

In terms of the reliability of results, most solvers
produce exactly one incorrect result on the practitioner-
set-2024 . This number is smaller than in Table 3 of the
conference version of this paper [53] because we consid-
ered a different and larger (but arguably less diverse) set
of benchmark instances for the same evaluation in that
paper. For more discussion of the (lack of) reliability of
LP solvers, see below and Sections 2.3 and 3.2.

Overall, Gurobi achieves the highest performance at
decent reliability; in the remainder of this section, we
thus use Gurobis whenever we apply non-exact LP.

LP feasibility tolerances. In Section 3.2, we studied the
impact of changing the LP solver’s default primal and
dual feasibility tolerance values on the artificial Mn

model using Gurobi and HiGHS. To better understand
how these parameters influence the reliability of results
in a more practical setting, we also ran Gurobi and HiGHS
with different tolerance settings on the practitioner-set-
2024 set. We again set both tolerances to the same value,
evaluating values 10−9 as the “most precise” configura-
tion (with 10−9 being the lowest value Gurobi accepts),
10−7 as it is the default for HiGHS, 10−6 as it is the
default of Gurobi, 10−4, and 10−3 as the “least precise”
setting where the tolerance value matches the relative
error we require. We use the topological optimization.

The results are summarised in Table 5. We again10

list the number of correct and incorrect results, but dif-
ferentiate the “no result” case into errors (where solving
the LP failed, e.g. due to running out of memory or
because the solver considers the problem infeasible) and
timeouts (with a timeout of 10 minutes here). Column
“time” lists the total time in minutes, including time-

10 Note the the numbers in Table 5 are not comparable with
those in Table 4 because the two experiments ran on different
hardware, so timeouts in the data for one table may show up as
any type of entry in the other table.

outs; it can only serve as a rough indication for how the
tolerance influences the runtime.

We see that lower tolerances in general lead to fewer
incorrect results but more timeouts and longer runtimes,
with value 10−9 being sufficient to avoid all incorrect
results on this benchmark set (unless instances that
timed out would, given enough time, lead to an incor-
rect result). However, the behaviour is not monotonic:
for example, Gurobi shows one timeout more for 10−4

than for all tighter tolerances, and HiGHS delivers two
incorrect results for 10−7 but none for both 10−6 and
10−9 (these may turn into errors and/or timeouts).

Configuration. Gurobi can be configured to use an “auto”
portfolio approach, potentially running multiple algo-
rithms concurrently on multiple threads, a primal or a
dual simplex algorithm, or a barrier method algorithm.
We compared each option (using 4 threads) and summa-
rize the results in Figure 7. The quantile plot shows that,
overall, there is no huge difference in performance. The
auto configuration is usually comparable to the dual
and barrier algorithm, but in several cases outperforms
them by a factor of more than 2. On the other hand, the
primal algorithm is the only configuration that similarly
outperforms auto on several benchmark instances, but
is also often significantly slower. Interestingly, in the
experiments for the conference version of this paper [53],
we had found that on the whole qvbs set, primal solves
the fewest instances, whereas we now find that on the
practitioner-set-2024 , it solves the most (50, compared
to the 49 of auto). Nonetheless, based on the previous
experiments and its very similar performance to primal,
we select the auto configuration (the default of Gurobi)
for the following experiments.

We highlight the scatter plot in the top-right of Fig-
ure 7 comparing the dual simplex configuration to the
barrier method. The barrier method has polynomial
worst-case complexity, unlike the potentially exponen-
tial simplex method. In this experiment, they perform

http://orcid.org/0000-0003-3268-8674

A Practitioner’s Guide to MDP Model Checking 17

Table 5: The impact of LP feasibility tolerance values on the practitioner-set-2024 set.

Gurobi HiGHS

tolerances correct incorr. error timeout time (min) correct incorr. error timeout time (min)

10−3 54 9 3 14 209 48 8 5 19 250
10−4 52 8 3 17 228 49 8 4 19 250
10−6 60 1 3 16 220 56 0 4 20 259
10−7 60 1 3 16 222 56 2 1 21 278
10−9 61 0 3 16 225 56 0 2 22 281

0 10 20 30 40 50 60 70 80
0.1

1

10

100

auto
prim
dual
barrier

2 4 8 16 64 256

2
4
8

16
32
64

≤1 n/a
≤1

≥512

Gurobis/dual simplex

G
ur

ob
i s/

ba
rr

ie
r

2 4 8 16 64 256

2
4
8

16
32
64

≤1 n/a
≤1

≥512

Gurobis/auto

G
ur

ob
i s/

pr
im

al
si

m
pl

ex

2 4 8 16 64 256

2
4
8

16
32
64

≤1 n/a
≤1

≥512

Gurobis/auto

G
ur

ob
i s/

du
al

si
m

pl
ex

2 4 8 16 64 256

2
4
8

16
32
64

≤1 n/a
≤1

≥512

Gurobis/auto

G
ur

ob
i s/

ba
rr

ie
r

Fig. 7: Comparison of Gurobi’s configurations.

0 10 20 30 40 50 60 70 80
0.1

1

10

100

v11.0/4 threads
v9.5/4 threads
v11.0/16 threads
v9.5/16 threads

2 4 8 16 64 256

2
4
8

16
32
64

≤1 n/a
≤1

≥512

Gurobis v11.0 / 16 threads

G
ur

ob
i s

v9
.5

/
16

th
re

ad
s

Fig. 8: Comparison of Gurobi v11.0 (Nov 2023) and v9.5 (Nov 2021).

comparably on most benchmarks, although the simplex
method solves more benchmark instances (47 versus 42).

Solver version. To also assess the extent of improve-
ments from updating the underlying solver, in Fig. 8
we compare Gurobi’s version 9.5 (November 2021, used
in [53]) and version 11.0 (November 2023, used in this

paper). We test both versions with 4 threads and 16
threads.

With 16 threads, version 11 is slightly faster and
solves 56 benchmarks versus 51 with version 9.5. With
4 threads (the default setting in the rest of the paper),
version 9.5 seems to be slightly faster.

18 Arnd Hartmanns et al.

0 10 20 30 40 50 60 70 80
0.1

1

10

100

1
4
8
16

2 4 8 16 64 256

2
4
8

16
32
64

≤1 n/a
≤1

≥512

Gurobis/1

G
ur

ob
i s/

16

2 4 8 16 64 256

2
4
8

16
32
64

≤1 n/a
≤1

≥512

Gurobis/4

G
ur

ob
i s/

1

2 4 8 16 64 256

2
4
8

16
32
64

≤1 n/a
≤1

≥512

Gurobis/4

G
ur

ob
i s/

8

2 4 8 16 64 256

2
4
8

16
32
64

≤1 n/a
≤1

≥512

Gurobis/4

G
ur

ob
i s/

16
Fig. 9: Comparison of how the number of threads affect the performance of Gurobi’s auto method.

0 10 20 30 40 50 60 70 80
0.1

1

10

100

simple/all/ineq
bounds/all/ineq
simple/init/ineq
simple/all/eq
bnds/init/ineq

2 4 8 16 64 256

2
4
8

16
32
64

≤1 n/a
≤1

≥512

simple/all/ineq

b
ou

nd
s/

al
l/

in
eq

2 4 8 16 64 256

2
4
8

16
32
64

≤1 n/a
≤1

≥512

simple/all/ineq

si
m

pl
e/

in
it

/i
ne

q

2 4 8 16 64 256

2
4
8

16
32
64

≤1 n/a
≤1

≥512

simple/all/ineq

si
m

pl
e/

al
l/

eq

2 4 8 16 64 256

2
4
8

16
32
64

≤1 n/a
≤1

≥512

simple/all/ineq

b
ou

nd
s/

in
it

/i
ne

q

Fig. 10: Performance impact of LP problem formulation variants (using Gurobis with 4 threads)

http://orcid.org/0000-0003-3268-8674

A Practitioner’s Guide to MDP Model Checking 19

0 10 20 30 40 50 60 70 80
0.1

1

10

100

LP
LP-topo
LP-mec
LP-mec-topo
VI2LP
VI2LP-topo
VI2LP-mec
VI2LP-mec-topo

2 4 8 16 64 256

2
4
8

16
32
64

≤1 n/a
≤1

≥512

LP

V
I2

L
P
-m

ec
-t

op
o

2 4 8 16 64 256

2
4
8

16
32
64

≤1 n/a
≤1

≥512

LP

L
P
-t

op
o

2 4 8 16 64 256

2
4
8

16
32
64

≤1 n/a
≤1

≥512

LP

L
P
-m

ec

2 4 8 16 64 256

2
4
8

16
32
64

≤1 n/a
≤1

≥512

LP

V
I2

L
P

Fig. 11: Comparison of the common optimizations for LP algorithms, using Gurobis v11.0, 4 threads and auto.

Threads. In Fig. 9, we more specifically investigate how
the number of threads affect Gurobi’s performance. In
contrast to the results in [53] with Gurobi’s version 9.5,
where the number of threads had no significant im-
pact, here we see that 8 and 16 threads are sometimes
significantly faster than 1 or 4 threads and solve sev-
eral instances more (49 with 4 threads vs. 55 with 16
threads). Nonetheless, in all following experiments, we
use 4 threads unless noted otherwise in order to allow
for reasonable parallelization of our experiments.

LP formulation. Fig. 10 shows the performance impact
of modifying the LP formulation by either

– supplying Gurobi with more precise bounds on the
variables for expected reward objectives using meth-
ods from [13,70] (“bounds” instead of “simple”),

– optimizing only for the initial state (“init”) instead
of for the sum over all states (“all”), or

– using equality (“eq”) instead of less-/greater-than-or-
equal (“ineq”) constraints for unique action states.

As in [53], no LP formulation is clearly superior, but
each modification may make a significant difference.

Optimizations. Fig. 11 shows that optimizations from
Section 2.4 have a significant positive impact overall.
The warm start and topological optimizations generally
reduce runtime (with few exceptions) and increase the
number of solved instances. The effect of MEC collaps-
ing is more mixed: it often increases runtime, but it also
increases the number of solved instances. Likely, the

overhead of Storm’s MEC-collapsing discussed in Sec-
tion 6.1.1 is also relevant here. Overall, we recommend
using all the common optimizations.

6.1.3 Policy Iteration

Solver for the induced MC. For PI, the main hyper-
parameter is the choice of the solver for the induced
MC. The quantile plot in Fig. 12 shows that gmres
with the incomplete LU precondition (gmres-ilu) usu-
ally performs best, being fastest and solving the most
instances. The scatter plots comparing it to its closest
competitors show that all of them (bigcstab-ilu, qmr-ilu
and VI) also outperform gmres-ilu on some instances.
Following Theorem 4.1, only PI/LUX is guaranteed to
produce the correct result. Interestingly, it solves more
instances than when using inexact LU or OVI as solver
for the induced MC, potentially because floating-point
errors induce spurious policy changes. Most of the other
tool configurations considered in Fig. 12 indeed pro-
duce several incorrect results, namely 3 (VI, qmr), 7
(gmres-ilu), and 10 (gmres-diag, gmres-ilu and bigcstab-
ilu). OVI and LU produce no incorrect results on the
practitioner-set-2024 .

Optimizations. Fig. 13 shows the impact of the topo-
logical optimizations and warm starts. We do not test
qualitative precomputations (as these are always on
in Storm while mcsta does not support PI) and MEC
collapsing (which is not implemented for PI in Storm).

20 Arnd Hartmanns et al.

0 10 20 30 40 50 60 70 80
0.1

1

10

100 PI/gmres-ilu
PI/gmres-diagonal
PI/gmres-none
PI/bicgstab-ilu
PI/qmr-ilu
PI/VI
PI/OVI
PI/LU
PI/LUX

2 4 8 16 64 256

2
4
8

16
32
64

≤1 n/a
≤1

≥512

PI/gmres-ilu

P
I/

L
U

X

2 4 8 16 64 256

2
4
8

16
32
64

≤1 n/a
≤1

≥512

PI/gmres-ilu

P
I/

bi
gc

st
ab

-i
lu

2 4 8 16 64 256

2
4
8

16
32
64

≤1 n/a
≤1

≥512

PI/gmres-ilu

P
I/

qm
r-

il
u

2 4 8 16 64 256

2
4
8

16
32
64

≤1 n/a
≤1

≥512

PI/gmres-ilu

P
I/

V
I

Fig. 12: Comparison of different algorithms for solving induced Markov chains in PI (without optimizations).

0 10 20 30 40 50 60 70 80
0.1

1

10

100

gmres-mono+mono
gmres-mono+topo
gmres-topo+mono
gmres-topo+topo
LUX -mono+mono
LUX -mono+topo
LUX -topo+mono
LUX -topo+topo

2 4 8 16 64 256

2
4
8

16
32
64

≤1 n/a
≤1

≥512

PI/gmres-mono+mono

P
I/

gm
re

s-
to

p
o+

m
on

o

0 10 20 30 40 50 60 70 80
0.1

1

10

100

PI/gmres-topo+mono
VI2PI/gmres-topo+mono
PI/LUX -topo+topo
VI2PI/LUX -topo+topo

2 4 8 16 64 256

2
4
8

16
32
64

≤1 n/a
≤1

≥512

PI/gmres-topo+mono

V
I2

P
I/

gm
re

s-
to

p
o+

m
on

o

Fig. 13: Comparison of PI optimizations: topological solving (top) and warm starts (bottom).

http://orcid.org/0000-0003-3268-8674

A Practitioner’s Guide to MDP Model Checking 21

For the topological optimizations, we use the
notation introduced in Section 4.2, distinguishing the
levels at which they can be applied. Trying all 4 com-
binations of monolithic and topological solving with
gmres-ilu, we conclude that topo/mono is best, i.e. de-
composing the MDP into SCCs, but solving the induced
MC monolithicly. The scatter plot shows that this holds
for essentially all instances. For LUX , mono+mono is sig-
nificantly worse than the tool configurations with topo-
logical optimizations, solving only 27 instances whereas
the other 3 solve 48 (topo+mono) or 50 (mono+topo
and topo+topo). Overall, topological optimizations sig-
nificantly improve the performance of PI.

For the warm start optimization, we use VI to com-
pute an initial policy. We denote this tool configuration
VI2PI. Applying warm starts on the best floating point
variant gmres-topo+mono and the best exact variant
LUX -topo+topo yields a significant increase in solved
instances for both methods. The scatter plot shows
that this optimization is also beneficial on almost all
instances.

6.1.4 Optimizations

Summarizing the previous discussions, we conclude the
following:

– An optimization does not necessarily improve the
performance of an algorithm on all instances. Instead,
it can either show mixed results, as for the different
LP formulations, or even be detrimental, like the
qualitative precomputations of mcsta for VI.

– Generally, it appears favourable to use topological
methods and warm starts, as they clearly improved
the performance of PI and LP as well as of the sound
VI variants.

– The implementation of an optimization naturally
affects its performance, as visible in the difference
between MEC collapsing for VI in mcsta vs. Storm.

We further experimented with the bisimulation and
essential states optimisations, which we did not consider
so far.

Bisimulation. Fig. 14 shows the effect of first reducing
the MDP by computing the bisimilar states (available
in Storm) and then solving it. We used monolithic naive
VI as inexact and VI2PI-topo+topo as exact solution
method. Clearly, for almost all benchmark instances in
the practitioner-set-2024 , the overhead for computing
the bisimulation is not worth the reduction in runtime
for working on a smaller MDP.

Essential states. Fig. 15 shows the effect of reducing
the MDP to only the essential states. This reduction is

implemented in mcsta, and we tested it for VI. The re-
sults appear promising: Using the reduction significantly
lowers the runtime on many benchmark instances, albeit
at the cost of solving one less instance.

6.2 Influence of the Benchmark Set

We now show how the selection of benchmarks greatly
affects the performance of algorithms, and hence also the
conclusions one can draw from an empirical comparison.
For this, we show the performance of a selection of
algorithms on the practitioner-set-2024 , the alljani set,
the hard set and the premise set (see Section 5.3 for a
description of these sets) in Fig. 16.

On the practitioner-set-2024 , we list more algo-
rithms, since on this small set it is feasible to run them
all (as we did for the analysis in Section 6.1 above).
For the other sets, we only consider a subset of tool
configurations, using one floating-point and one exact
representative for each class of algorithm. We always
use Storm and the topological optimization, and pick
(i) VI as baseline, (ii) OVI and RSX as representatives
for VI, (iii) PI with warm start and gmres or LUX as
solver for the induced MC, and (iv) LP with warm start
and MEC-collapsing, solved by Gurobi with 4 threads
and the auto configuration or by the exact variant of
SoPlex.

Additionally, we include two lines called “best” and
“sel-best” in Fig. 16. The former plots the runtime re-
sulting from, on every instance, selecting the optimal
algorithm for this instance. With the latter, we try to
approximate this line by using a selection among few
tool configurations, namely VI-topo-mecqs, PI/gmres-
mono+topos, VI-esm and IIm. These configurations were
selected by choosing those that have near-optimal run-
time on most of the benchmarks in the practitioner-set-
2024 . Note that sel-best is not given for the premise set,
as we did not run all relevant configurations on this set,
and because VI is always expected to perform poorly
on this particular set. Similarly, this selection is not
applicable for the exact solvers on the right of Fig. 16.

Given this evaluation on multiple benchmark sets,
we can draw conclusions about what the best solution
method for MDP model checking may be, and how this
is influenced by the benchmark set—leaving it to the
practitioner to determine which of our benchmarks the
models resulting from their concrete case study are most
similar to.

Best solution methods. We thoroughly investigated the
state of the art in MDP model checking, showing that
there is no single best algorithm for this task. Overall,
although LP has the superior (polynomial) theoreti-

22 Arnd Hartmanns et al.

0 10 20 30 40 50 60 70 80
0.1

1

10

100

VI-monos

VI-mono-bisims

VI2PI-topoXs
VI2PI-topo-bisimX

s

2 4 8 16 64 256

2
4
8

16
32
64

≤1 n/a
≤1

≥512

VIs

V
I-

bi
si

m
s

Fig. 14: Impact of Bisimulation minimization

0 10 20 30 40 50 60 70 80
0.1

1

10

100

VIm
VI-esm

2 4 8 16 64 256

2
4
8

16
32
64

≤1 n/a
≤1

≥512

VIm
V

I-
es

m

Fig. 15: Impact of essential state optimization

cal complexity, in our practical evaluation, it almost
always performs worse than the other (exponential) ap-
proaches. This is even though we use modern commercial
solvers and tune both the LP encoding of the problem
as well as the solvers’ parameters. In general, OVI and
VI2PI are performing well on the alljani set, and on
the practitioner-set-2024 in particular. This confirms
the observations made in [53] on the qvbs and hard set,
both of which are subsets of the alljani set. Still, both
methods are far from the best line in Fig. 16. Thus, we
conclude that to achieve good performance on all kinds
of instances, a selection (such as the one used for the sel-
best line) of algorithms is necessary. An interesting open
question is to find heuristics to recommend a method
based on constructing and analyzing the state space of
the instance.

We highlight again that using floating-point methods
always carries the risk of incorrect results, even when
using theoretically exact methods like LP and PI.

Impact of benchmark selection. On the one hand, there
are benchmark sets that are very focussed on instances
of a particular type. Concretely, on the premise set, VI
based methods are clearly worse than those based on
PI or LP. In particular, VI is wrong on many instances,
as they are numerically challenging. On the other hand,
Fig. 16 suggests that we succeeded in selecting a repre-

sentative subset of alljani with the practitioner-set-2024 ,
as the overall trends are similar in both plots. Note that
we omitted the plots for the hard subset described in [53,
Sec. 5.2], since they look essentially the same as the one
for alljani. This suggests that our additions to the qvbs
set have made the benchmark set more diverse, not
favouring VI-based methods any more.

6.3 Influence of the State Ordering

We investigate the impact of permuting the internal or-
der of the MDP’s states: While states are mathematically
a set, the transition matrices order these states. The
representation of this matrix is relevant. In particular,
all implementations of VI we consider use Gauss-Seidel
VI, i.e. every update to the estimate vector happens
in-place. Similarly, when solving the induced MC in PI,
linear equation solvers like gmres can take advantage of
the equation system’s structure.

In Fig. 17, we show the effect of permuting the states
for all three classes of algorithms. We use standard VI,
PI with gmres, and LP with Gurobi, all implemented
in Storm. We do not use the topological, warm start,
or MEC-collapsing optimizations. We consider three
orderings:

http://orcid.org/0000-0003-3268-8674

A Practitioner’s Guide to MDP Model Checking 23

0 20 40 60 80
0.1

1

10

100

VI
OVI
PI
LP
VI2PI
VI2LP
VIm
sel-best
best

0 20 40 60 80
0.1

1

10

100

RSX

VI2PI/LUX

VI2LP/SoPlexX

practitioner-set-2024

150 200 250 300 350 400
0.1

1

10

100

VI
OVI
VI2PI
VI2LP
sel-best

150 200 250 300 350 400
0.1

1

10

100

RSX

VI2PI/LUX

VI2LP/SoPlexX

alljani set

0 50 100 150 200
0.1

1

10

100

VI
OVI
VI2PI
VI2LP

0 50 100 150 200
0.1

1

10

100

RSX

VI2PI/LUX

VI2LP/SoPlexX

premise set

Fig. 16: Comparison of MDP model checking algorithms on different benchmark sets, considering floating point
algorithms on the left and exact algorithms on the right.

– breadth-first search back-to-front (bfs-b2f): The de-
fault ordering in both Storm and mcsta explores the
state space in a breadth-first search and then evalu-
ates states backwards, intuitively starting with the
states “closest to the end”.

– breadth-first search front-to-back (bfs-f2b): The de-
fault ordering reversed, i.e. starting with the initial
state.

– random (rnd): A random permutation.

The state ordering affects all three classes of algorithm.
For VI, the default ordering bfs-b2f is clearly optimal,
as visible in the quantile plot as well as the scatter
plots. Using a random ordering makes the solving 2-8
times slower (with the scatter plot for bfs-b2f similar, but
omitted for space). For LP, the effect is least pronounced.

The bfs-b2f ordering is preferable, but outperformed
by the other orderings on some benchmark instances.
For PI, the effect is most extreme: the random state-
ordering solves 9 fewer instances than bfs-b2f and is also
consistently worse. Interestingly, the bfs-f2b ordering
appears preferable for PI.

6.4 Influence of Hardware

Common practice in research papers on probabilistic
model checking is to fix a hardware platform and exe-
cute the benchmarks on this hardware platform. Claims
about the algorithm and its implementation are then
generalized beyond this hardware. In recent years, it has
become increasingly popular to put the environments for

24 Arnd Hartmanns et al.

0 10 20 30 40 50 60 70 80
0.1

1

10

100
VI-bfs-b2f
VI-bfs-f2b
VI-rnd
LP-bfs-b2f
LP-bfs-f2b
LP-rnd
PI-bfs-b2f
PI-bfs-f2b
PI-rnd

2 4 8 16 64 256

2
4
8

16
32
64

≤1 n/a
≤1

≥512

LP-bfs-b2f

L
P
-r

nd

2 4 8 16 64 256

2
4
8

16
32
64

≤1 n/a
≤1

≥512

VI-bfs-b2f

V
I-

rn
d

2 4 8 16 64 256

2
4
8

16
32
64

≤1 n/a
≤1

≥512

PI-bfs-b2f

P
I-

bf
s-

f2
b

2 4 8 16 64 256

2
4
8

16
32
64

≤1 n/a
≤1

≥512

PI-bfs-b2f

P
I-

rn
d

Fig. 17: Impact of permuting the states

these experiments into a Docker container for easier re-
production of the benchmarks. This led us to formulate
the following questions:

HW-Q1 What is the difference between running our
experiments within a Docker container and on bare
metal?

HW-Q2 What is the difference in running our experi-
ments on different hardware?

The goal is not to assess different hardware or to under-
stand which hardware is most suitable for probabilistic
model checking. Instead, we aim to understand whether
the common practice to benchmark on a single type of
host machine potentially invalidates claims about the
algorithms and their implementations.
Setup. We used 9 machines, listed in Table 6. These
machines are between 1 and 9 years old with a nice
spread over Intel and AMD processors. For ARM64-
based machines, we encountered some challenges dis-
cussed below and thus only report preliminary results
for this platform. We can run our experiments either on
the operating system directly, or within a Docker con-
tainer, outlined below. A platform combines a machine
with the choice of host. As benchmark set, we use the
practitioner-set-2024 . On each platform, we executed
six configurations: VIs, OVIs, VIm, OVIm, VI2LPs, and
VI2PIs. We chose them as reasonable and relevant sub-
set of all configurations. As timeout, we use 10 minutes.
Empirically, our experiments run between 8-14 hours
on our platforms.

Results in a nutshell. The general trends hold when
running our benchmarks on the different hardware and
on either bare metal or inside a container. In particular,
the quantile plots qualitatively all agree. However, a
closer look highlights that some benchmarks perform
significantly differently on different hardware platforms.
It is not uncommon that for over ten benchmarks, two
algorithms have a 30% performance difference on one
platform and (almost) no performance difference on a
different platform. We therefore recommend that authors
reporting results on probabilistic model checking use
different hardware to validate their claims, unless the
differences between algorithms are orders of magnitude
apart or the benchmark set is sufficiently large (at least
as large as practitioner-set-2024).

6.4.1 Using Docker Containers

To answer to HW-Q1, we run our Docker container and
(independently) also install all tools directly in the OS
on two machines: The (AMD) TRP5965 with a GCC
12 compiler and the (Intel) i910980 with a GCC 11
compiler.

Our Docker container. The Docker container is based on
a Ubuntu 24.04 LTS standard container for the x86 plat-
form with a GCC 13 compiler. The container is extended
by the Storm Dockerfile (which includes the dependen-
cies and Storm). We further extend this container with

http://orcid.org/0000-0003-3268-8674

A Practitioner’s Guide to MDP Model Checking 25

Table 6: Hardware platforms used in Section 6.4.

Identifier CPU RAM OS Comment
claix23 Intel Xeon 8468 Sapphire unclear Rocky Linux 8.9 HPC with slurm
E1620 Intel Xeon E5-1620 v4 2x16GB DDR4 2400 Ubuntu 20.04 9 years old
i911900 Intel Core i9-11900K 4x32GB DDR4 2400 Ubuntu 22.04
i910980 Intel Core i9-10980XE 2x32GB DDR4 3200 Ubuntu 22.04
M1U Apple M1 Ultra 128GB LPDDR5-6400 (unified) Mac OS 14.2 MacStudio
R32200 AMD Ryzen 3 2200G 2x8GB DDR4 3200 Win 10 Home Docker gets only 10GB
R54650U AMD Ryzen 5 PRO 4650U 1x16GB DDR4 3200 Debian 13 Laptop
R97950 AMD Ryzen 9 7950X3D 4x32GB DDR5 4800 Ubuntu 22.04
TRP5965 AMD ThreadRipper Pro 5965 8x64GB DDR4 3200 (registered) Debian 12

2 4 816 64 256

2
4
8

16
32
64

≤1 n/a
≤1

≥512

dockerized

ba
re

m
et

al

(a) TRP5965

2 4 816 64 256

2
4
8

16
32
64

≤1 n/a
≤1

≥512

dockerized

ba
re

m
et

al
(p

or
ta

bl
e)

(b) TRP5965 (portable compile)

2 4 816 64 256

2
4
8

16
32
64

≤1 n/a
≤1

≥512

dockerized
ba

re
m

et
al

(o
rt

ab
le

)

(c) i910980 (portable compile)

2 4 816 64 256

2
4
8

16
32
64

≤1 n/a
≤1

≥512

WLS

si
ng

le
-m

ac
hi

ne
li
ce

ns
e

(d) License effects

OVIs VIs VI2LPs VI2PIs OVIm VIm

Fig. 18: Performance on bare metal and inside a Docker container.

0 20 40 60 80
0.1

1

10

100

(a) claix23

0 20 40 60 80
0.1

1

10

100

(b) E1620

0 20 40 60 80
0.1

1

10

100

(c) R332200

0 20 40 60 80
0.1

1

10

100

(d) R54650U

0 20 40 60 80
0.1

1

10

100

(e) R97950

0 20 40 60 80
0.1

1

10

100

(f) TRP5965

0 20 40 60 80
0.1

1

10

100

(g) i910980

0 20 40 60 80
0.1

1

10

100

(h) i910980-np

0 20 40 60 80
0.1

1

10

100

(i) i911900

0 20 40 60 80
0.1

1

10

100

(j) M1U

Fig. 19: Quantile plots for different hardware configurations (legend see Fig. 18)

the binary for mcsta and with our benchmark scripts11.
When running the container, we mount an academic
WLS license for Gurobi. With this setup, we make three
observations:

1) Docker environments itself do not incur a tangible
runtime overhead. In Fig. 18, we show the performance

11 The Docker container is available online and the instructions
are part of the artifact.

effects of running inside a Docker container. If a Docker
container would yield a constant runtime penalty, then
we would expect all points to lie on a perfect line parallel
to the main diagonal. Figure 18(a) shows installing and
running all tools as default on the TRP5965. Notably,
the points for mcsta, which runs with the same precom-
piled binaries embedding a .NET runtime environment
everywhere, lie on a straight line. This observation also

26 Arnd Hartmanns et al.

2 4 816 64 256

2
4
8

16
32
64

≤1 n/a
≤1

≥512

TRP5965

R
97

95
0X

(a) AMD platforms

2 4 816 64 256

2
4
8

16
32
64

≤1 n/a
≤1

≥512

i911900

i9
10

98
0

(b) Intel platforms

2 4 816 64 256

2
4
8

16
32
64

≤1 n/a
≤1

≥512

i911900

R
97

95
0

(c) Similar platforms

2 4 816 64 256

2
4
8

16
32
64

≤1 n/a
≤1

≥512

E1620

T
R

P
59

65

(d) Contrasting platforms

Fig. 20: Detailed comparison of performance of docker container on different hardware.

highlights that the TRP5965 yields very deterministic
timings. However, in particular the PI configuration
yields some stark outliers. As we show below, these are
not due to running a Docker container.

2) Instruction sets matter. On the TRP5965, this effect
is solely due to the compiler flags used to compile Storm
inside a Docker file where the compiler does not use the
complete available instruction set to increase portability
of the Docker container. In Fig. 18(b), we run a version
of Storm compiled with this flag on bare-metal: We
observe no significant differences between the Docker
container on the TRP5965.

3) The compiler version may matter. We now consider
the i910980. Again, the mcsta points lie on a straight
line, also indicating deterministic timings. However, if
we run the same portably-compiled Storm version on
the i910980, we still observe significant differences: In
all cases, it seems to be faster to run Storm inside a
Docker container. Our current best guess is that this is
caused by differences between the two compiler versions
and the operating systems, although different compiler
versions are also present on the TRP5965. The quantile
plots for Figs. 19(g) and 19(h) reflect the differences,
where Storm implementations for all algorithms perform
slightly better inside the Docker container, but where
the overall picture remains the same.

Licensing challenges. Running Gurobi within Docker re-
quires a special license that needs an active Internet
connection to communicate with Gurobi servers for every
benchmark. We mostly observe a < 1 second delay which
varies over time and over machines, but also some re-
markable differences between wall-clock time and CPU
time for the LP configurations. Indeed, these also appear
to be caused by the type of Gurobi license: Within our
university’s network and on the bare metal, we can use a
single-machine academic license that does not constantly
connect to Gurobi servers, see Fig. 18(d). 12

12 Considering CPU time rather than wall-clock time is compli-
cated if one measures timings for parts of the code.

Docker and ARM hosts. We note that the Docker con-
tainer can be emulated using QEMU on an ARM64
platform, which may skew performance but also pre-
vents executing mcsta because the .NET 8.0 runtime it
uses is not supported under QEMU emulation at the
time of writing (due to using features/instructions that
are currently not properly emulated, leading to mcsta
crashing).

6.4.2 Using Different Hardware

To answer HW-Q2, we primarily run our Docker con-
tainer on 7 different platforms with an x86-64 host. We
create quantile plots for 10 different platforms. In ad-
dition to the performance inside the Docker container
on 7 different machines, Fig. 19(a) reflects a bare-metal
run on the claix23 cluster used for the main experi-
ments, Fig. 19(h) runs bare-metal on the i910980 and
was mentioned in the section above, and Fig. 19(j) runs
bare-metal on the M1U. We make the following two
observations:
1) Similar trends on all platforms. The quantile plots
in Fig. 19 look similar, although close inspection shows
differences in the number of benchmarks solved by PI
and LP, in particular, and more subtly, the relative
performance of VI on Storm and mcsta, especially for
solving roughly 60 benchmarks. In Fig. 21 on page 31,
where we fix a method and compare different hardware
platforms, we see that for the four VI configs, the shapes
of the curves look very similar. For PI and LP, there is
more spread. This spread for LP-based methods may
actually be an effect of the use of WLS licenses for
Gurobi as discussed above. It is notable that compared
with the hardware tested here, running benchmarks on
claix appears to be favourable for LP-based approaches
and unfavourable for PI-based approaches.
2) Individual differences are significant. In Fig. 20, we
compare four pairs of machines, while Fig. 22 on page 31
gives a richer set of such comparisons. Comparing ei-
ther two AMD (Fig. 20(a)) or two Intel (Fig. 20(b))

http://orcid.org/0000-0003-3268-8674

A Practitioner’s Guide to MDP Model Checking 27

platforms running the same container shows a spread
of up to 40% in performance differences and ranging
over different configurations. The difference between
two comparably-powered machines, one AMD and one
Intel as in Fig. 20(c), is generally a bit higher and more
configuration-dependent. If one additionally compares
the machines that differ significantly in their computa-
tional power, these differences gets larger, see Fig. 20(d).
We have not investigated whether some machines pre-
dictably perform better, e.g., on MEC collapsing, or
on large state spaces (where a larger cache may be
beneficial).

ARMv8/64 platforms. Due to the increased popularity of
the ARMv8 architecture, we executed some preliminary
experiments on an M1 chip. While Fig. 19(j) shows a
familiar image, we need to be more careful. We executed
the benchmark set twice and observed that the timings
on the M1U are not as deterministic, see Fig. 23(a) on
page 31. The additional quantile plot, however, looks
similar. It is also interesting to see that while the quantile
plot looks similar to the x86-64 platforms, the individual
spread compared to comparable Intel (Fig. 23(c)) and
AMD (Fig. 23(d)) platforms is significant.

6.5 Discussion and Takeaways

The empirical study above is necessarily a snapshot.
Some results may be unsurprising, e.g. that the bench-
mark set really matters, while other results are highly
specialised and bound to change, e.g. that the perfor-
mance of specific hardware or tools is lacking. Beyond
these concrete statements, we believe that our empiri-
cal evaluation uncovers three take-away messages, each
addressing a different perspective on model checking
tools.

If the goal is to model-check a fixed MDP
and model checking that MDP is a bottleneck, then
one should investigate using a different configuration
instead of the default of one’s favourite tool. In partic-
ular, Fig. 16 shows that the virtual best may perform
significantly better than that configuration. To find a
good configuration, it often suffices to test a limited
set of four configurations, outlined in Section 6.2. Fi-
nally, it may be worth investigating the performance
using smaller variants of the given MDP, but it is an
open question how to correctly define such a smaller but
representative MDP.

If the goal is to analyse the next MDP model
checking algorithm then it is advisable to refrain
from making statements based on small numbers of
benchmarks or non-diverse benchmark sets. For exam-
ple, the qvbs benchmark set was not structurally diverse,

in particular not containing benchmarks with MECs.
Statements about handling MECs based on the qvbs
set were premature and our experiments show that also
some tool implementations to handle MECs may be
sub-optimal. When considering (subsets of) small bench-
mark sets, hardware effects may explain some of the
differences—see Section 6.4. More generally, it is essen-
tial to continuously push for a more diverse benchmark
set. Beyond the benchmark set, the use of preprocess-
ing steps is heavily benchmark-dependent and it may
be misleading to enable a particular preprocessing step
across different approaches as shown in Section 6.1.4.

If a model checker appears as a subroutine
then great care is advised. Consider the case where the
subroutine is called on an MDP that is obtained by
some transformation. The performance gains of a dif-
ferent transformation to a (standard) model checking
routine on a (standard) MDP may be due to some hid-
den structure and may not indicate a better translation,
but merely that this translation is bad for the default
model checking routine. We note that such effects may
even depend on simple state reorderings which can sig-
nificantly change the performance of the methods (see
Section 6.3).

7 Conclusion

This paper evaluates MDP model checking from a practi-
cal perspective, shining a spotlight on the main methods
to analyse a given MDP for undiscounted, indefinite-
horizon properties. While the literature has a traditional
focus on value iteration-based methods, we also review
approaches based on policy iteration and linear pro-
gramming in depth. We highlight a range of possible
variations to the approaches, and illustrate how several
approaches may yield incorrect results. The larger part
of the paper discusses an extensive empirical evalua-
tion along multiple axes: It shows that overall, value
iteration remains the fastest algorithm, even when com-
pared to LP-based approaches that in theory run in
polynomial time. This general trend does not help when
model checking individual MDPs, however: For them,
either PI or LP-based approaches may be faster. Our
evaluation debunks some myths about the role of pre-
processing steps and presents take-away messages that
raise awareness for the large influence that seemingly
innocent choices have on the evaluation of a particular
algorithm.

These take-away messages are a call for future work:
Indeed, our paper shows that independent tools with
strong reference implementations of the different ap-
proaches are necessary to properly evaluate the merits
of an algorithm, but also that users of such tools must

28 Arnd Hartmanns et al.

receive help in choosing a set of meaningful defaults.
Therefore, we must understand the key characteristics of
MDPs that can be the basis for a prognosis of algorithm
performance on a particular MDP. While we observed
the behaviour of the different algorithms and have some
intuition into what makes certain structures (or e.g.
the premise set in particular) hard, an entire research
question of its own is to properly identify and quantify
these structural properties. As a first step, we provide
the practitioner-set-2024 . It strikes the balance between
being structurally diverse and being small enough so
that many tool configurations can be evaluated on it.
Of course, further investigation is required to find out
which structures are most relevant, in order to be able
to improve the practitioner-set-2024 , making it more
representative while maintaining the balance.

References

1. Allamigeon, X., Dadush, D., Loho, G., Natura, B., Végh,
L.A.: Interior point methods are not worse than simplex. In:
FOCS, pp. 267–277. IEEE (2022)

2. Anand, R., Aggarwal, D., Kumar, V.: A comparative analysis
of optimization solvers. Journal of Statistics and Management
Systems 20(4), 623–635 (2017). DOI 10.1080/09720510.2017.
1395182

3. Ashok, P., Chatterjee, K., Daca, P., Kretínský, J., Meggendor-
fer, T.: Value iteration for long-run average reward in Markov
decision processes. In: CAV (1), LNCS, vol. 10426, pp. 201–
221. Springer (2017). DOI 10.1007/978-3-319-63387-9_10

4. Auger, D., de Montjoye, X.B., Strozecki, Y.: A generic strategy
improvement method for simple stochastic games. In: MFCS,
LIPIcs, vol. 202, pp. 12:1–12:22. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2021). DOI 10.4230/LIPICS.MFCS.
2021.12

5. Azeem, M., Evangelidis, A., Kretínský, J., Slivinskiy, A.,
Weininger, M.: Optimistic and topological value iteration for
simple stochastic games. CoRR abs/2207.14417 (2022).
DOI 10.48550/arXiv.2207.14417

6. Azeem, M., Evangelidis, A., Kretínský, J., Slivinskiy, A.,
Weininger, M.: Optimistic and topological value iteration
for simple stochastic games. In: ATVA, Lecture Notes in
Computer Science, vol. 13505, pp. 285–302. Springer (2022).
DOI 10.1007/978-3-031-19992-9_18

7. Baier, C., de Alfaro, L., Forejt, V., Kwiatkowska, M.: Model
checking probabilistic systems. In: Handbook of Model Check-
ing, pp. 963–999. Springer (2018)

8. Baier, C., D’Argenio, P.R., Größer, M.: Partial order reduction
for probabilistic branching time. In: A. Cerone, H. Wiklicky
(eds.) 3rd Workshop on Quantitative Aspects of Program-
ming Languages (QAPL), Electronic Notes in Theoretical
Computer Science, vol. 153-2, pp. 97–116. Elsevier (2005).
DOI 10.1016/J.ENTCS.2005.10.034

9. Baier, C., Größer, M., Ciesinski, F.: Partial order reduction
for probabilistic systems. In: 1st International Conference
on Quantitative Evaluation of Systems (QEST), pp. 230–239.
IEEE Computer Society (2004). DOI 10.1109/QEST.2004.
1348037

10. Baier, C., Hermanns, H., Katoen, J.P.: The 10,000 facets of
MDP model checking. In: Computing and Software Science,
LNCS, vol. 10000, pp. 420–451. Springer (2019). DOI 10.
1007/978-3-319-91908-9_21

11. Baier, C., Katoen, J.P.: Principles of model checking.
MIT Press (2008). URL https://mitpress.mit.edu/books/
principles-model-checking

12. Baier, C., Klein, J., Klüppelholz, S., Märcker, S.: Computing
conditional probabilities in Markovian models efficiently. In:
TACAS, LNCS, vol. 8413, pp. 515–530. Springer (2014). DOI
10.1007/978-3-642-54862-8_43

13. Baier, C., Klein, J., Leuschner, L., Parker, D., Wunderlich,
S.: Ensuring the reliability of your model checker: Inter-
val iteration for Markov decision processes. In: CAV (1),
LNCS, vol. 10426, pp. 160–180. Springer (2017). DOI
10.1007/978-3-319-63387-9_8

14. Baier, C., Klein, J., Leuschner, L., Parker, D., Wunderlich,
S.: Ensuring the reliability of your model checker: Interval
iteration for Markov decision processes. In: CAV (1), Lecture
Notes in Computer Science, vol. 10426, pp. 160–180. Springer
(2017). DOI 10.1007/978-3-319-63387-9_8

15. Balaji, N., Kiefer, S., Novotný, P., Pérez, G.A., Shirmoham-
madi, M.: On the complexity of value iteration. In: ICALP,
LIPIcs, vol. 132, pp. 102:1–102:15. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2019). DOI 10.4230/LIPIcs.ICALP.
2019.102

16. Bellman, R.: A Markovian decision process. Journal of Math-
ematics and Mechanics 6(5), 679–684 (1957)

17. Berkelaar, M., Eikland, K., Notebaert, P.: Introduction to
lp_solve 5.5.2.11. URL https://lpsolve.sourceforge.net/5.5/.
Accessed 2023-01-25.

18. Bertsekas, D.P., Tsitsiklis, J.N.: An analysis of stochastic
shortest path problems. Math. Oper. Res. 16(3), 580–595
(1991). DOI 10.1287/moor.16.3.580

19. Boyd, S.P., Vandenberghe, L.: Convex Optimization. Cam-
bridge University Press (2014)

20. Brázdil, T., Chatterjee, K., Chmelik, M., Forejt, V., Kretínský,
J., Kwiatkowska, M.Z., Parker, D., Ujma, M.: Verification
of Markov decision processes using learning algorithms. In:
ATVA, LNCS, vol. 8837, pp. 98–114. Springer (2014). DOI
10.1007/978-3-319-11936-6_8

21. Budde, C.E., Dehnert, C., Hahn, E.M., Hartmanns, A.,
Junges, S., Turrini, A.: JANI: Quantitative model and tool
interaction. In: TACAS (2), Lecture Notes in Computer
Science, vol. 10206, pp. 151–168 (2017). DOI 10.1007/
978-3-662-54580-5_9

22. Budde, C.E., Hartmanns, A., Klauck, M., Kretínský, J.,
Parker, D., Quatmann, T., Turrini, A., Zhang, Z.: On cor-
rectness, precision, and performance in quantitative verifi-
cation – QComp 2020 competition report. In: ISoLA (4),
LNCS, vol. 12479, pp. 216–241. Springer (2020). DOI
10.1007/978-3-030-83723-5_15

23. Chatterjee, K., Henzinger, T.A.: Value iteration. In: 25 Years
of Model Checking, LNCS, vol. 5000, pp. 107–138. Springer
(2008). DOI 10.1007/978-3-540-69850-0_7

24. Chen, T., Forejt, V., Kwiatkowska, M.Z., Parker, D., Simaitis,
A.: Automatic verification of competitive stochastic systems.
Formal Methods Syst. Des. 43(1), 61–92 (2013). DOI 10.
1007/S10703-013-0183-7

25. Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.):
Handbook of Model Checking. Springer (2018). DOI 10.1007/
978-3-319-10575-8

26. Cubuktepe, M., Jansen, N., Junges, S., Katoen, J., Topcu, U.:
Convex optimization for parameter synthesis in mdps. IEEE
Trans. Autom. Control. 67(12), 6333–6348 (2022). DOI
10.1109/TAC.2021.3133265. URL https://doi.org/10.1109/
TAC.2021.3133265

27. Dai, P., Mausam, Weld, D.S., Goldsmith, J.: Topological
value iteration algorithms. J. Artif. Intell. Res. 42, 181–209
(2011). URL https://www.jair.org/index.php/jair/article/
view/10725

http://orcid.org/0000-0003-3268-8674
https://mitpress.mit.edu/books/principles-model-checking
https://mitpress.mit.edu/books/principles-model-checking
https://lpsolve.sourceforge.net/5.5/
https://doi.org/10.1109/TAC.2021.3133265
https://doi.org/10.1109/TAC.2021.3133265
https://www.jair.org/index.php/jair/article/view/10725
https://www.jair.org/index.php/jair/article/view/10725

A Practitioner’s Guide to MDP Model Checking 29

28. D’Argenio, P.R., Jeannet, B., Jensen, H.E., Larsen, K.G.:
Reduction and refinement strategies for probabilistic anal-
ysis. In: PAPM-PROBMIV, Lecture Notes in Computer
Science, vol. 2399, pp. 57–76. Springer (2002). DOI
10.1007/3-540-45605-8_5

29. D’Argenio, P.R., Niebert, P.: Partial order reduction on con-
current probabilistic programs. In: 1st International Con-
ference on Quantitative Evaluation of Systems (QEST), pp.
240–249. IEEE Computer Society (2004). DOI 10.1109/QEST.
2004.1348038

30. Dutertre, B., de Moura, L.M.: A fast linear-arithmetic solver
for DPLL(T). In: CAV, LNCS, vol. 4144, pp. 81–94. Springer
(2006)

31. Eisentraut, J., Kelmendi, E., Kretínský, J., Weininger, M.:
Value iteration for simple stochastic games: Stopping criterion
and learning algorithm. Inf. Comput. 285(Part), 104886
(2022). DOI 10.1016/j.ic.2022.104886

32. Fearnley, J.: Exponential lower bounds for policy iteration. In:
ICALP (2), LNCS, vol. 6199, pp. 551–562. Springer (2010).
DOI 10.1007/978-3-642-14162-1_46

33. Feng, L., Kwiatkowska, M.Z., Parker, D.: Automated learning
of probabilistic assumptions for compositional reasoning. In:
FASE, Lecture Notes in Computer Science, vol. 6603, pp.
2–17. Springer (2011). DOI 10.1007/978-3-642-19811-3_2

34. Forejt, V., Kwiatkowska, M.Z., Norman, G., Parker, D.: Au-
tomated verification techniques for probabilistic systems. In:
SFM, Lecture Notes in Computer Science, vol. 6659, pp. 53–
113. Springer (2011). DOI 10.1007/978-3-642-21455-4_3

35. Forejt, V., Kwiatkowska, M.Z., Parker, D.: Pareto curves for
probabilistic model checking. In: ATVA, LNCS, vol. 7561, pp.
317–332. Springer (2012). DOI 10.1007/978-3-642-33386-6_
25

36. Free Software Foundation: The GNU Multiple Precision Arith-
metic Library. URL https://gmplib.org/. Accessed 2023-01-
25.

37. Funke, F., Jantsch, S., Baier, C.: Farkas certificates and min-
imal witnesses for probabilistic reachability constraints. In:
TACAS (1), LNCS, vol. 12078, pp. 324–345. Springer (2020)

38. Ge, D., Huangfu, Q., Wang, Z., Wu, J., Ye, Y.: Cardinal
Optimizer (COPT) user guide (2022). URL https://guide.
coap.online/copt/en-doc

39. GetFEM project: Gmm++ Library. URL https://getfem.
org/gmm/. Accessed 2023-01-25.

40. Giro, S.: Optimal schedulers vs optimal bases: An approach
for efficient exact solving of Markov decision processes. Theor.
Comput. Sci. 538, 70–83 (2014). DOI 10.1016/j.tcs.2013.08.
020

41. Giro, S., D’Argenio, P.R., Fioriti, L.M.F.: Partial order re-
duction for probabilistic systems: A revision for distributed
schedulers. In: M. Bravetti, G. Zavattaro (eds.) 20th Inter-
national Conference on Concurrency Theory (CONCUR),
Lecture Notes in Computer Science, vol. 5710, pp. 338–353.
Springer (2009). DOI 10.1007/978-3-642-04081-8_23

42. Gleixner, A.M., Steffy, D.E., Wolter, K.: Improving the accu-
racy of linear programming solvers with iterative refinement.
In: ISSAC, pp. 187–194. ACM (2012)

43. Gleixner, A.M., Steffy, D.E., Wolter, K.: Iterative refinement
for linear programming. Tech. Rep. 3, ZIB, Takustr. 7, 14195
Berlin (2016). DOI 10.1287/ijoc.2016.0692

44. GNU Project: GLPK (GNU Linear Programming Kit). URL
http://www.gnu.org/software/glpk/glpk.html

45. Google: Glop – linear optimization. URL https://developers.
google.com/optimization/lp. Accessed 2023-01-25.

46. Guennebaud, G., Jacob, B., et al.: Eigen v3 (2010). URL
http://eigen.tuxfamily.org

47. Gurobi Optimization, LLC: Gurobi Optimizer Reference Man-
ual (2022). URL https://www.gurobi.com

48. Haddad, S., Monmege, B.: Reachability in MDPs: Refining
convergence of value iteration. In: RP, LNCS, vol. 8762, pp.
125–137. Springer (2014)

49. Haddad, S., Monmege, B.: Interval iteration algorithm for
MDPs and IMDPs. Theor. Comput. Sci. 735, 111–131 (2018).
DOI 10.1016/j.tcs.2016.12.003

50. Hall, J., Galabova, I., Gottwald, L., Feldmeier, M.: HiGHS
– high performance software for linear optimization. URL
https://www.maths.ed.ac.uk/hall/HiGHS/. Accessed 2023-
01-25.

51. Hartmanns, A.: Correct probabilistic model checking with
floating-point arithmetic. In: TACAS (2), LNCS, vol. 13244,
pp. 41–59. Springer (2022). DOI 10.1007/978-3-030-99527-0_
3

52. Hartmanns, A., Hermanns, H.: The Modest Toolset: An in-
tegrated environment for quantitative modelling and verifi-
cation. In: TACAS, LNCS, vol. 8413, pp. 593–598. Springer
(2014). DOI 10.1007/978-3-642-54862-8_51

53. Hartmanns, A., Junges, S., Quatmann, T., Weininger,
M.: A practitioner’s guide to MDP model checking algo-
rithms. In: TACAS (1), Lecture Notes in Computer Sci-
ence, vol. 13993, pp. 469–488. Springer (2023). DOI
10.1007/978-3-031-30823-9_24

54. Hartmanns, A., Kaminski, B.L.: Optimistic value iteration.
In: CAV (2), LNCS, vol. 12225, pp. 488–511. Springer (2020).
DOI 10.1007/978-3-030-53291-8_26

55. Hartmanns, A., Klauck, M., Parker, D., Quatmann, T., Rui-
jters, E.: The quantitative verification benchmark set. In:
TACAS, LNCS, vol. 11427, pp. 344–350. Springer (2019).
DOI 10.1007/978-3-030-17462-0_20

56. Hensel, C.: The probabilistic model checker storm: sym-
bolic methods for probabilistic model checking. Ph.D. the-
sis, RWTH Aachen University, Germany (2018). URL
http://publications.rwth-aachen.de/record/752011

57. Hensel, C., Junges, S., Katoen, J.P., Quatmann, T., Volk,
M.: The probabilistic model checker Storm. Int. J. Softw.
Tools Technol. Transf. 24(4), 589–610 (2022). DOI 10.1007/
s10009-021-00633-z

58. Huangfu, Q., Hall, J.A.J.: Parallelizing the dual revised sim-
plex method. Math. Program. Comput. 10(1), 119–142 (2018).
DOI 10.1007/s12532-017-0130-5

59. IBM: IBM ILOG CPLEX Optimizer. URL https://www.ibm.
com/analytics/cplex-optimizer. Accessed 2023-01-25.

60. Junges, S., Jansen, N., Seshia, S.A.: Enforcing almost-sure
reachability in pomdps. In: CAV (2), Lecture Notes in Com-
puter Science, vol. 12760, pp. 602–625. Springer (2021)

61. Junges, S., Torfah, H., Seshia, S.A.: Runtime monitors for
Markov decision processes. In: CAV (2), Lecture Notes in
Computer Science, vol. 12760, pp. 553–576. Springer (2021).
DOI 10.1007/978-3-030-81688-9_26

62. Kattenbelt, M., Kwiatkowska, M.Z., Norman, G., Parker, D.:
A game-based abstraction-refinement framework for Markov
decision processes. Formal Methods Syst. Des. 36(3), 246–280
(2010). DOI 10.1007/s10703-010-0097-6

63. Kretínský, J., Meggendorfer, T.: Of cores: A partial-
exploration framework for Markov decision processes. Log.
Methods Comput. Sci. 16(4) (2020). URL https://lmcs.
episciences.org/6833

64. Kretinsky, J., Ramneantu, E., Slivinskiy, A., Weininger, M.:
Comparison of algorithms for simple stochastic games. Inf.
Comput. (2022). DOI 10.1016/j.ic.2022.104885

65. Kumar, A., Zilberstein, S.: History-based controller design
and optimization for partially observable MDPs. In: ICAPS,
vol. 25, pp. 156–164 (2015)

66. Kwiatkowska, M.Z., Norman, G., Parker, D., Sproston, J.:
Performance analysis of probabilistic timed automata using
digital clocks. Formal Methods Syst. Des. 29(1), 33–78 (2006).
DOI 10.1007/s10703-006-0005-2

https://gmplib.org/
https://guide.coap.online/copt/en-doc
https://guide.coap.online/copt/en-doc
https://getfem.org/gmm/
https://getfem.org/gmm/
http://www.gnu.org/software/glpk/glpk.html
https://developers.google.com/optimization/lp
https://developers.google.com/optimization/lp
http://eigen.tuxfamily.org
https://www.gurobi.com
https://www.maths.ed.ac.uk/hall/HiGHS/
http://publications.rwth-aachen.de/record/752011
https://www.ibm.com/analytics/cplex-optimizer
https://www.ibm.com/analytics/cplex-optimizer
https://lmcs.episciences.org/6833
https://lmcs.episciences.org/6833

30 Arnd Hartmanns et al.

67. Larsen, K.G., Skou, A.: Bisimulation through probabilistic
testing. Inf. Comput. 94(1), 1–28 (1991). DOI 10.1016/
0890-5401(91)90030-6

68. Littman, M.L., Dean, T.L., Kaelbling, L.P.: On the complexity
of solving Markov decision problems. In: UAI, pp. 394–402.
Morgan Kaufmann (1995)

69. Mathur, U., Bauer, M.S., Chadha, R., Sistla, A.P.,
Viswanathan, M.: Exact quantitative probabilistic model
checking through rational search. Formal Methods Syst. Des.
56(1), 90–126 (2020)

70. McMahan, H.B., Likhachev, M., Gordon, G.J.: Bounded real-
time dynamic programming: RTDP with monotone upper
bounds and performance guarantees. In: ICML, ACM Inter-
national Conference Proceeding Series, vol. 119, pp. 569–576.
ACM (2005). DOI 10.1145/1102351.1102423

71. Meggendorfer, T.: PET - A partial exploration tool for prob-
abilistic verification. In: ATVA, Lecture Notes in Computer
Science, vol. 13505, pp. 320–326. Springer (2022). DOI
10.1007/978-3-031-19992-9_20

72. Meggendorfer, T., Weininger, M.: Playing games with your
PET: extending the partial exploration tool to stochastic
games. In: CAV, Lecture Notes in Computer Science. Springer
(2024 (to appear))

73. MOSEK ApS: The MOSEK Optimization Suite 10.0.34. URL
https://docs.mosek.com/latest/intro/index.html. Accessed
2023-01-25.

74. de Moura, L.M., Bjørner, N.S.: Z3: an efficient SMT solver.
In: TACAS, LNCS, vol. 4963, pp. 337–340. Springer (2008).
DOI 10.1007/978-3-540-78800-3_24

75. Phalakarn, K., Takisaka, T., Haas, T., Hasuo, I.: Widest
paths and global propagation in bounded value iteration
for stochastic games. In: CAV (2), LNCS, vol. 12225, pp.
349–371. Springer (2020). URL https://doi.org/10.1007/
978-3-030-53291-8_19

76. Puterman, M.L.: Markov Decision Processes: Discrete Stochas-
tic Dynamic Programming. Wiley Series in Probability and
Statistics. Wiley (1994). DOI 10.1002/9780470316887

77. Quatmann, T., Katoen, J.P.: Sound value iteration. In: CAV
(1), LNCS, vol. 10981, pp. 643–661. Springer (2018). DOI
10.1007/978-3-319-96145-3_37

78. Roux, S.L., Pérez, G.A.: The complexity of graph-based reduc-
tions for reachability in Markov decision processes. In: FoS-
SaCS, Lecture Notes in Computer Science, vol. 10803, pp. 367–
383. Springer (2018). DOI 10.1007/978-3-319-89366-2_20

79. Wimmer, R., Jansen, N., Vorpahl, A., Ábrahám, E., Katoen,
J.P., Becker, B.: High-level counterexamples for probabilistic
automata. Log. Methods Comput. Sci. 11(1) (2015)

80. Wimmer, R., Kortus, A., Herbstritt, M., Becker, B.: Proba-
bilistic model checking and reliability of results. In: DDECS,
pp. 207–212. IEEE Computer Society (2008). DOI 10.1109/
DDECS.2008.4538787

81. Ye, Y.: The simplex and policy-iteration methods are strongly
polynomial for the Markov decision problem with a fixed
discount rate. Mathematics of Operations Research 36(4),
593–603 (2011)

http://orcid.org/0000-0003-3268-8674
https://docs.mosek.com/latest/intro/index.html
https://doi.org/10.1007/978-3-030-53291-8_19
https://doi.org/10.1007/978-3-030-53291-8_19

A Practitioner’s Guide to MDP Model Checking 31

0 20 40 60 80
1

10

100

(a) OVIs

0 20 40 60 80
1

10

100

(b) VIs

0 20 40 60 80
1

10

100

(c) VIm

0 20 40 60 80
1

10

100

(d) OVIm

0 20 40 60 80
1

10

100

(e) VI2LPs

0 20 40 60 80
1

10

100

(f) VI2PIs

claix23 E1620 i910980 i911900 R32200 R54650U TRP5965 R97950 M1U

Fig. 21: Quantile plots with fixed tool configurations on various hardware.

2 4 816 64 256

2
4
8

16
32
64

≤1 n/a
≤1

≥512

TRP5965

R
32

20
0

2 4 8 16 64 256

2
4
8

16
32
64

≤1 n/a
≤1

≥512

i911900

E
16

20

2 4 8 16 64 256

2
4
8

16
32
64

≤1 n/a
≤1

≥512

E1620

R
32

20
0

2 4 8 16 64 256

2
4
8

16
32
64

≤1 n/a
≤1

≥512

E1620

R
97

95
0

2 4 8 16 64 256

2
4
8

16
32
64

≤1 n/a
≤1

≥512

TRP5965

R
54

65
0U

2 4 8 16 64 256

2
4
8

16
32
64

≤1 n/a
≤1

≥512

i911900

cl
ai

x2
3

2 4 8 16 64 256

2
4
8

16
32
64

≤1 n/a
≤1

≥512

claix23

T
R

P
59

65

2 4 8 16 64 256

2
4
8

16
32
64

≤1 n/a
≤1

≥512

claix23

R
54

65
0U

2 4 8 16 64 256

2
4
8

16
32
64

≤1 n/a
≤1

≥512

TRP5965

R
97

95
0

2 4 8 16 64 256

2
4
8

16
32
64

≤1 n/a
≤1

≥512

i911900

i9
10

98
0

2 4 8 16 64 256

2
4
8

16
32
64

≤1 n/a
≤1

≥512

i911900

R
97

95
0

2 4 8 16 64 256

2
4
8

16
32
64

≤1 n/a
≤1

≥512

i911900

R
32

20
0

Fig. 22: Detailed comparison of different hardware. A column is analogous to a single plot in Fig. 20.

2 4 816 64 256

2
4
8

16
32
64

≤1 n/a
≤1

≥512

first run

se
co

nd
ru

n

(a) Twice on the M1U

2 4 816 64 256

2
4
8

16
32
64

≤1 n/a
≤1

≥512

M1U

cl
ai

x2
3

(b)

2 4 816 64 256

2
4
8

16
32
64

≤1 n/a
≤1

≥512

M1U

i9
11

90
0

(c)

2 4 816 64 256

2
4
8

16
32
64

≤1 n/a
≤1

≥512

M1U

T
R

P
59

65

(d)

Fig. 23: Preliminary comparison to an ARM64 platform.

	Introduction
	Background
	Solving MDPs with Linear Programs
	Sound Policy Iteration
	Experimental setup
	Experimental evaluation
	Conclusion

