
Safe Reinforcement Learning via Shielding for POMDPs

Steven Carr1 Nils Jansen2 Sebastian Junges2 Ufuk Topcu1

1The University of Texas at Austin
2Radboud University, Nijmegen, The Netherlands

Abstract

Reinforcement learning (RL) in safety-critical envi-
ronments requires an agent to avoid decisions with
catastrophic consequences. Various approaches ad-
dressing the safety of RL exist to mitigate this prob-
lem. In particular, so-called shields provide formal
safety guarantees on the behavior of RL agents
based on (partial) models of the agents’ environ-
ment. Yet, the state-of-the-art generally assumes
perfect sensing capabilities of the agents, which is
unrealistic in real-life applications. The standard
models to capture scenarios with limited sensing
are partially observable Markov decision processes
(POMDPs). Safe RL for these models remains an
open problem so far. We propose and thoroughly
evaluate a tight integration of formally-verified
shields for POMDPs with state-of-the-art deep RL
algorithms and create an efficacious method that
safely learns policies under partial observability.
We empirically demonstrate that an RL agent using
a shield, beyond being safe, converges to higher
values of expected reward. Moreover, shielded
agents need an order of magnitude fewer train-
ing episodes than unshielded agents, especially in
challenging sparse-reward settings.

1 INTRODUCTION

Reinforcement learning (RL) [Sutton and Barto, 1998] is a
machine learning technique for decision-making in uncer-
tain and dynamic environments. An RL agent explores its
environment by taking actions and perceiving feedback sig-
nals, usually rewards and observations on the system state.
With success stories such as AlphaGo [Silver et al., 2016]
RL nowadays reaches into areas such as robotics [Kober
et al., 2013] or autonomous driving [Sallab et al., 2017].

One of the major limitations for RL in safety-critical envi-

ronments is the high cost of failure. An RL agent explores
the effects of actions – often selected randomly such as in
state-of-the-art policy-gradient methods [Peters and Schaal,
2006] – and will thus inevitably select actions that poten-
tially cause harm to the agent or its environment. Thus,
typical applications for RL are games [Mnih et al., 2013] or
assume the ability to learn on high-fidelity simulations of
realistic scenarios [Tao et al., 2019]. The problem of unsafe
exploration has triggered research on the safety of RL [Gar-
cıa and Fernández, 2015]. Safe RL may refer to (1) chang-
ing (“engineering”) the reward function [Laud and DeJong,
2003] to encourage the agent to choose safe actions, (2)
adding a second cost function (“constraining”) [Moldovan
and Abbeel, 2012], or (3) blocking (“shielding”) unsafe
actions at runtime [Alshiekh et al., 2018].

Safe RL in partially observable environments suffers from
uncertainty both in the agent’s actions and perception. Such
environments, typically modeled as partially observable
Markov decision processes (POMDPs) [Kaelbling et al.,
1998], require histories of observations to extract a suffi-
cient understanding of the environment. Recent deep RL
approaches for POMDPs, including those that employ recur-
rent neural networks [Hausknecht and Stone, 2015, Wier-
stra et al., 2007], learn from these histories and can generate
high-quality policies with sufficient data. However, these
approaches do not guarantee safety during or after learning.

We capture safety by reach-avoid specifications, a special
case of temporal logic constraints Pnueli [1977]. To provide
safety guarantees, we capture assumptions on the system
dynamics in a partial model of the environment. In partic-
ular, while we need to know all potential transitions in the
POMDP, probabilities and rewards may remain unspeci-
fied [Raskin et al., 2007]. Under this (necessary) assump-
tion, we compute a shield that ensures verifiably safe be-
havior of an RL agent. While obtaining good partial models
may be intricate, model-based engineering is widespread in
safety-critical situations. Probabilities in these models may
be rough estimates at best, but if a transition exists (with
positive probability) is often much better understood.

The availability of a (partial) model allows to tap
into existing work on model-based reasoning to extract
the aforementioned shield. However, despite tremendous
progress [Pineau et al., 2003, Walraven and Spaan, 2017,
Silver and Veness, 2010], model-based reasoning, especially
verification, has limitations: Even if a POMDP is completely
known, scalability remains a challenge. Already, whether for
a POMDP there exists a policy that satisfies a temporal logic
specification is undecidable [Madani et al., 1999]. However,
computing policies for qualitative reach-avoid specifica-
tions is EXPTIME-complete [Chatterjee et al., 2015]. While
this still limits the application in full generality, efficient
methods based on satisfiability solvers show good empirical
scalability [Chatterjee et al., 2016, Junges et al., 2021].

Our contribution is the first method to shielding for
POMDPs. We employ an effective integration of shields
computed via satisfiability solving [Junges et al., 2021]
with various state-of-the-art RL algorithms from Tensor-
flow [Guadarrama et al., 2018], and we provide an extensive
experimental evaluation. We show the following natural
effects that arise from such a combination.

• Safety during learning: Exploration is only safe when
the RL agent is provided with a shield. Without the
shield, the agent makes unsafe choices even if it has
access to the inherent state estimation.

• Safety after learning: A trained agent that has an in-
centive to adhere to safety still behaves unsafe some-
times. Moreover, typical unwanted tradeoffs in settings
with safety and (additional) performance objectives
are avoided when (1) safety is (strictly) enforced via
shields and (2) the agent focuses on performance.

• RL convergence: A shield not only ensures safety, but
also significantly reduces the search space and the re-
quired amount of data for RL.

Fig. 1 shows the outline of our approach. We demonstrate
effects and insights on shielded RL for POMDPs using sev-
eral typical examples and provide detailed information on
RL performance as well as videos showing the exploration
and training process. To investigate to what extent more
lightweight alternatives to a shield help RL, we experiment
with a state estimator. This estimator uses the partial model
to track in which states the model may be, based on the
observed history. We show that, while the RL agent may
indeed benefit from this additional information, the shield
provides more safety and faster convergence than relying
on just the state estimator. Finally, after learning, we may
gently phase out a shield and still preserve the better per-
formance of the shielded RL agent. Then, even an overly
protective shield may help to bootstrap an RL agent.

Further related work. Several approaches to safe RL
in combination with formal verification exist [Hasanbeig
et al., 2020, Könighofer et al., 2017, Alshiekh et al., 2018,

Agent Environment

State estimator

Shield

action

observation & reward

Partial model

Model

described by

abstract

Safety spec

ha
s

ac
ce

ss
to

induces

induces

action & observation

Figure 1: RL for partial-observation and partial-model in-
formation accessible via a state estimator and a shield.

Jansen et al., 2020, Fulton and Platzer, 2018, Bouton et al.,
2019]. These approaches either rely on shielding, or guide
the RL agent to satisfy temporal logic constraints. However,
none of these approaches take our key problem of partial
observability into account. Recent approaches to find safe
policies for POMDPs with partial model knowledge do not
consider reinforcement learning [Cubuktepe et al., 2021].

2 PROBLEM STATEMENT

In this section, we introduce POMDPs as the standard model
for environments for sequential decision-making under par-
tial observability. We distinguish the learning goal of an
agent that operates in such an environment, and the agent’s
safety constraints. We capture the former by expected re-
wards, the latter via reach-avoid safety specifications.

2.1 POMDPS

A (discrete) partially observable Markov decision process
(POMDP) is a tupleM = (S, I,Act , O, Z,P,R) where S
is a finite state space. I is the initial distribution over the
states that gives the probability I(s) that the agent starts
in state s ∈ S, and Act is a finite space of actions for the
agent to take. Z is a finite observation space and O(z|s) is
the probability of observing z when the environment is in
state s. Finally, P(s′|s, a) is a transition model representing
the conditional probability of moving to a state s′ ∈ S after
executing action a ∈ A in state s ∈ S. Not every action is
available in every state, i.e.,P is a partial function. The set of
available actions in state s is Act(s). When executing action
a ∈ Act in state s ∈ S, the agent receives a scalar reward
R(s, a). We remark that our POMDPs have dead-ends from
which an agent cannot obtain positive rewards [Kolobov
et al., 2012]. We describe agent behavior via a (observation-
based) policy π : (Z×Act)∗×Z → Distr(Act) that maps
an observation sequence τ to a distribution over actions. In
contrast to the (observable) MDPs, the agent may depend
on the history of actions – this means that the agent has to
store (aspects of) the history of observations.

Problem 1. Given a POMDPM′, the problem is to
find a policy π that maximizes the expected discounted
reward E [

∑∞
t=0 γ

tRt] for POMDPM, where γt with
0 ≤ γt ≤ 1 is the discount factor andRt is the reward
the agent receives at time t.

In this standard problem for POMDPs, maximizing the ex-
pected reward is the learning goal of the agent.

2.2 SAFETY CONSTRAINTS

In addition to the learning goal, an agent in safety-critical
settings must adhere to safety constraints. We capture
these constraints using (qualitative) reach-avoid specifica-
tions, a subclass of indefinite horizon properties [Puterman,
1994]. Such specifications necessitate to always avoid cer-
tain bad states from AVOID ⊆ S and reach states from
REACH ⊆ S almost-surely, i.e., with probability one (for
arbitrary long horizons). We denote these constraints by
ϕ = 〈REACH,AVOID〉. The relationM(π) |= ϕ denotes
that the agent adheres to the specification ϕ under the policy
π. We formalize such winning policies in the next section.

Problem 2. Given a POMDP M, the problem is
to find a policy π that maximizes E [

∑∞
t=0 γ

tRt] for
POMDPM while π is winning, that is,M(π) |= ϕ.

Note that an optimal solution to Problem 2 may induce a
lower reward than for Problem 1, as the agent has to strictly
adhere to the safety constraint while collecting rewards.

3 STATE ESTIMATORS AND SHIELDS

In this section, we present the main ingredients for the pro-
posed methodology, as outlined in Figure 1. We discuss
beliefs over environment states and belief supports. Then,
we introduce the notion of a safety shield. Finally, we dis-
cuss the guarantees we are able to provide using shields,
and the particular assumptions we have to make.

3.1 BELIEFS AND BELIEF SUPPORTS

Belief states. As the current state of a POMDP is not ob-
servable, agents may infer an estimation of the system state
from a sequence of observations. This estimation is typically
a belief of the form b : (Z ×Act)∗ × Z → Distr(S), that
is, a distribution that describes the probability that we are
currently in a certain state based on the history so far. Con-
sequently, a policy π : b→ Distr(Act) can also directly be
defined on the beliefs. An agent may incrementally update
the belief upon receiving new observations using a Bayesian
update. This belief update depends on the transition (and
observation) probabilities in the POMDP. The belief dynam-
ics can be captured by a (fully observable) belief MDP in

which the (infinitely many) beliefs of the POMDP are the
states. Due to this infinite number of beliefs, computing
a policy that maximizes the reward is generally undecid-
able [Madani et al., 1999]. This is in contrast to handling
qualitative reach-avoid specifications, as we detail below.

Winning beliefs. For a set of states S′ ⊆ S of the
POMDP, Prπb(S) denotes the probability to reach S′ from
the belief b using the policy π.

Definition 1 (Winning). A policy π is winning for specifi-
cation ϕ from belief b in POMDPM iff Prπb(AVOID) = 0
and Prπb(REACH) = 1, i.e., if it reaches AVOID with
probability zero and REACH with probability one (almost-
surely) when b is the initial state. Belief b is winning for ϕ
inM if there exists a winning policy from b.

For multiple beliefs, we define winning regions (aka safe or
controllable regions). A winning region (for POMDPs) is
a set of winning beliefs, that is, from each belief within a
winning region, there exists a winning policy.

Belief support. A state s with positive belief b(s) > 0
is in the belief support, that is, s ∈ supp(b). The belief-
support can be updated using only the graph of the POMDP
(without probability knowledge) by a simplified belief up-
date. The following result constitutes the basis of the cor-
rectness of our approach.

Theorem 1 (Junges et al. [2021]). For a winning belief b,
any belief b′ with supp(b′) = supp(b) is winning.

That means, we only need to take the finite set of belief
supports into account to compute winning policies, beliefs,
and regions for qualitative reach-avoid properties [Raskin
et al., 2007]. Technically, one has to construct a (finite,
albeit exponential) belief-support (stochastic) game that
provides a suitable abstraction of the belief MDP [Junges
et al., 2020]. We directly define polices on the belief support
of the form πb : B → Act , where B denotes the set of all
belief supports. Basically, this pure or deterministic policy
chooses one unique action for each belief support supp(b).

3.2 SHIELDS

The purpose of a shield is to prevent the agent from taking
actions which would violate a (reach-avoid) specification.
For avoid specifications, the shield prevents the agent from
entering avoid states, or from entering states from which it
is impossible to prevent reaching an avoid state in the future.
Consequently, a shield ensures that an agent stays in a win-
ning region. To stay inside this region, the agent must pick
an action such that all successor states with respect to this
action (from the current belief) are also inside the winning
region. For reach-avoid specifications, a shield additionally
prevents the agent from visiting dead-ends. A shield itself

cannot force an agent to visit reach states. However, under
mild assumptions, we can additionally ensure that the agent
eventually visits the reach state: It suffices to assume that the
agent is fair1. w.r.t. the actions that stay within the winning
region. We remark that most RL agents are fair.

Technically, we define a shield as a set of (winning) policies.
In the literature, such a set of policies is referred to as a
permissive policy [Dräger et al., 2015, Junges et al., 2016].

Definition 2 (Permissive policy and shield). Given a
POMDPM, a permissive policy is given by ν : b→ 2Act .
A policy π is admissible for ν if for all beliefs b it holds that
π(b) ∈ ν(b). A permissive policy is a ϕ-shield forM if all
its admissible policies are winning.

Such a set of policies allows multiple actions at each state,
as long as these actions belong to policies that satisfy the
specification. Note that as a consequence of Theorem 1, the
computation of a shield is based on the belief support. We
will detail the necessary prerequisites in the following.

3.3 SAFETY GUARANTEES

A provably-correct shielding approach necessarily requires
prior knowledge on the model. We discuss the exact type of
knowledge that is needed to provide safety guarantees.

Partial models. We assume the agent only has access to
a partial modelM′ = (S, I,Act , O, Z,P ′) where the tran-
sition model P ′ yields unknown, but positive probabilities.
Essentially, P ′ defines a set of (possible) transitions. We
say that a POMDPM = (S, I,Act , O, Z,P) and a partial
modelM′ = (S, I,Act , O, Z,P ′) have coninciding transi-
tions iff it holds for all states s, s′ ∈ S and actions a ∈ Act
that P(s′|s, a) > 0 iff P ′(s′|s, a) > 0. Intuitively, the par-
tial model defines exactly the graph of the original POMDP.
Similarly,M′ overapproximates the transition model ofM,
if it holds for all states s, s′ ∈ S and actions a ∈ Act that
P(s′|s, a) > 0 if P ′(s′|s, a) > 0. The original POMDP has
no transitions that are not present in the partial model.

We state the following results about the guarantees a shield
is able to provide, depending on the partial model.

Theorem 2 (Reach-Avoid Shield). Let M and M be
two POMDPs with coinciding transitions, and ϕ =
〈REACH,AVOID〉 a reach-avoid specification, then a ϕ-
shield for the partial modelM′ is a ϕ-shield forM.

This theorem is a direct consequence of Theorem 1. Know-
ing the exact set of transitions with (arbitrary) positive prob-
ability for a POMDP is sufficient to compute a ϕ-shield.

1Fairness is a notion from formal verification which ensures
that an agent that visits a state infinitely often must take every
(safe) action available in that state infinitely often. An agent that
takes any (safe) action with positive probability is fair.

For avoid specifications, we can further relax the assump-
tions while still giving the same hard guarantees. Intuitively,
it suffices to require that each transition in the partial model
exists (with positive probability) in the (true) POMDP.

Theorem 3 (Avoid Shield). LetM′ overapproximate the
transition model ofM, and let ϕ′ = 〈AVOID〉 be an avoid
specification, then a ϕ′-shield for the partial modelM′ is a
ϕ′-shield for the POMDPM.

If the partial model is further relaxed, it is generally im-
possible to construct a shield that provides the same hard
guarantees. Nevertheless, shields may empirically signifi-
cantly improve performance or safety of RL agents, as we
will demonstrate in our experiments.

4 SHIELDS AND RL IN POMDPS

We instantiate Figure 1 as follows: While the environment is
described as a (discrete) POMDP, we assume that the agent
can only depend on partial models, as discussed in the previ-
ous section. In this section, we discuss two interfaces to this
knowledge that can be used independently or in conjunc-
tion. We underpin qualitatively how these interfaces help
state-of-the-art RL agents. In the experimental evaluation
that follows in the next section, we see that the quantitative
advantage to the RL agent is an intricate function of both
the domain and the RL agent.

Using the partial model via a shield. We assume the
availability of a shield that ensures reach-avoid specifica-
tions as outlined above. Following Theorem 1, such a shield
can be computed symbolically using modern satisfiability
solvers [Junges et al., 2021]. We exploit our definition of
state estimators, belief supports, and the assumptions and
results in Theorems 2 and 3. Essentially, we use a state esti-
mator b : (Z × Act)∗ × Z → Distr(S) to create a shield
ν : supp(b) → 2Act that operates directly on the belief
support, see Theorem 1. For the specification ϕ, this shield,
yields for every belief the set of safe actions. We restrict the
available actions for the agent to these safe actions.

Using the partial model via a state estimator. As an
additional, light-weight, interface, we investigate the avail-
ability of a belief-support state estimator as is also used by
the shield internally. This estimator (Z ×Act)∗ × Z → 2S

yields, based on the sequence of observations and previ-
ous actions, the set of POMDP states that could have been
reached so far. The agent can use the state estimation as an
additional observation as basis for the decision-making.

4.1 SAFETY DURING LEARNING

(Only) shielded RL agents can enforce safety during learn-
ing. Notice that without the notion of a shield, the agent

Figure 2: Illustration for estimators accelerate learning.

A B

C

Figure 3: Illustration for shields accelerate learning.

must take an action first to understand that it may lead to a
bad state. While an adequately constructed shield ensures
that we visit the reach-states eventually (with probability
one), we cannot give an upper bound on the number of steps
required to visit these states. However, we can construct
shields for finite-horizon reach-avoid specifications using
the same methods for a modified POMDP. We remark that
if the partial model is not faithful to the true POMDP, that
is, it has a different graph structure, the shielded agent may
violate the specification.

State estimators themselves do not directly contribute to
safe exploration. However, the additional observations do
help to recognize critical states. In particular, consider an
action (such as switching on a light) which is useful and
safe in most situations (except maybe a gas leakage). A state
estimator may provide the additional observation signals
that allow the RL agent to efficiently distinguish these states,
thereby indirectly improving safety, even during learning.

4.2 SAFETY AFTER LEARNING

Even after successful learning, agents which keep exploring
may keep violating safety. Furthermore, reward objectives
and safety constraints may not coincide, e.g., the reward
structure may be richer. While safety may only avoid car-
crashes, learning objectives may include performance mea-
sures such as fuel consumption. The combination of objec-
tives is non-trivial, and weighted combinations lead to a
trade-off between safety and performance. Then, even in the
limit (after convergence), an RL agent may keep violating
the safety constraints. On the other hand, in presence of a
shield, the RL agent may fully focus on the performance
measures as safety is already guaranteed. The effect of state
estimators before and after learning is roughly analogous.

4.3 RL CONVERGENCE SPEED

Even beyond providing safety guarantees, learning in par-
tially observable settings remains a challenge, especially

when rewards are sparse. The availability of a partial model
provides potential to accelerate the learning process. In par-
ticular, the availability of a state estimator allows enriching
the observation with a signal that compresses the history.
Consider the POMDP sketch in Fig. 2, illustrating a typical
example where the agent early on makes an observation
(orange, top) or (blue, bottom), must learn to remember this
observation until the end, where it has to take either action
a (solid) when it saw orange before, or action b (dashed)
when it saw blue before. State estimation provides a signal
that includes whether we are in the bottom or top part of the
model, and thus significantly simplifies the learning.

Slightly orthogonal, a shield may provide incentives to (not)
explore parts of the state space. Consider an environment as
sketched out in Fig. 3. We have partitioned the state space
into three disjoint parts. In region A, there are no avoid
states (with a high negative reward) but neither are there
any positive rewards, thus, region A is a dead-end. In region
B, all states will eventually reach a positive reward, and in
region C, there is a (small) probability that we eventually
reach an avoid state with a high negative reward. An agent
has to learn that it should always enter region B from the
initial state. However, if it (uniformly) randomly chooses
actions (as an RL agent may do initially) it will only explore
region B in one third of the episodes. If the high negative
reward is not encountered early, it will take quite some time
to skew the distribution towards entering region B. Even
worse, in cases where the back-propagation of the sparse
reward is slow, region A will remain to appear attractive
and region C may appear more attractive whenever back-
propagation is faster. The latter happens if the paths towards
positive reward in region C are shorter than in region B.

4.4 LEARNING FROM THE SHIELD

Finally, it is interesting to consider the possibility of dis-
abling the additional interfaces after an initial training phase.
For example, this allows us to hot-start an agent with the
shield and then relax the restrictions it imposes. Such a set-
ting is relevant whenever the shield is overly conservative –
e.g., entering some avoid-states is unfortunate but not safety-
critical. It may also simplify the (formal) analysis of the RL
agent, e.g., via neural network verification, as there is no
further need to integrate the shield or state estimator in these
analyses. We investigate two ways to disable these interfaces
and to evaluate agent performance after this intervention:
either a smooth transition or sudden deactivation.

When switching off shields suddenly, the agent will be
overly reliant on the effect of the shield. While it remembers
some good decisions, it must learn to avoid some unsafe
actions. We want to encourage the agent to learn to not rely
on the shield. To support this idea, we propose a smooth
transition: When switching of the shield, we give immediate
negative rewards whenever an action not allowed by the

0 2 4

·103

0

5

10

Number of episodes

A
ve

ra
ge

R
ew

ar
d

Random Policy Observation Belief Support

0 2 4

·103
−5

0

5

10

0 2 4

·103

−10

0

10

20

0 2 4

·103

−1,000

0

1,000

Number of episodes
0 2 4

·103

−1,000

0

1,000

0 2 4

·103

−1,000

0

1,000

(a) Refuel (N=6, Energy=8) (b) Evade (N=6, Radius=2) (c) Rocks (N=4)

(d) Intercept (N=7, Radius=1) (e) Avoid (N=6, Radius=3) (f) Obstacle (N=6)

Figure 4: REINFORCE performed with (solid) and without (dashed) a shield restricting unsafe actions. The red lines show
when the RL agent is trained using only the observations and the blue lines indicate when the RL agent is trained using some
state estimation in the form of belief support. The gray lines are the average reward obtained by applying a random policy.

shield is taken. We decay this negative reward over time to
gently fade out the effect of a shield.

When switching off state estimators, the learned agent is
now no longer executable as it lacks necessary information.
Naive solutions for this problem can be trivially supported,
e.g. by defaulting to a fixed observation. We leave a proper
study of switching off state estimators for future work.

5 EXPERIMENTS

We applied shielded RL in six tasks involving agents oper-
ating in partially observable N × N grids. We compared
the shield’s performance in five different deep RL methods:
DQN [Mnih et al., 2015], DDQN [van Hasselt et al., 2016],
PPO [Schulman et al., 2017], discrete SAC [Christodoulou,
2019] and REINFORCE [Williams, 1992].

Setup. We use the POMDP environments from [Junges
et al., 2021]], in particular Refuel, Evade, Rocks, Intercept,
Avoid and Obstacle. Each has a nominal REACH objec-
tive and a set of AVOID locations that trap the agent in
place, for a full description of the domains and their reward
structures see the domain descriptions in the Appendix. The
environments come with a simulator and a belief-support
tracker based on Storm [Dehnert et al., 2017]. Shields are
computed using the satisfiability checker Z3 Jovanovic and
de Moura [2012]. We developed bindings to Tensorflow’s

TF-Agents package [Guadarrama et al., 2018] and connect
the provided state-of-the-art implementations of the afore-
mentioned algorithms, in particular, we use the masking in
TensorFlow to enforce the precomputed shield. We provide
full details of the implementation, the hyperparameters and
the selection method in the supplementary material. All ex-
periments were performed using an 8-core 3.2GHz Intel
Xeon Platinum 8000 series processor with 32GB of RAM.
For each experiment, unless otherwise specified, we lim-
ited episodes to a maximum of 100 steps and calculated
the average reward across 10 evaluation episodes. Due to
the sparse reward nature of the domains and for the sake of
readability, we performed smoothing for all figures across
a five-interval window. In episodal RL algorithms, such as
REINFORCE, we trained on 5000 episodes with an eval-
uation interval every 100 episodes, and in the step-based
RL algorithms, such as DQN, DDQN, PPO and discrete
SAC, we trained on 105 steps with an evaluation interval
every 1000 steps. Additionally, in the discrete SAC, we use
long short-term memory (LSTM) as comparison to recent
LSTM-based deep RL methods on POMDPs [Wierstra et al.,
2007, Hausknecht and Stone, 2015].

5.1 RESULTS

In Figure 4, we demonstrate the performance of an RL agent
on the aforementioned domains. In this and subsequent
plots, the dashed lines indicate RL agents learning without

the benefit of the shield, while solid lines indicate that the
agent uses shields. In addition, we include the For brevity,
the majority of the comparisons in this section show the
REINFORCE algorithm. We include the source code, the
full set of results and plots for all learning methods and
domains in the data appendix. In the sequel, we highlight
important elements of the challenges presented in sparse
domains, the shield’s improved performance and how the
belief support and its representation impacts learning.

Domains are sparse and thus challenging. This obser-
vation may not be surprising, but the domains considered
are sparse. Without side-information (from the model), the
deep RL algorithms struggle to handle the partially observ-
able domains. In particular, actually reaching target states
with a random policy is very unlikely, for example in Evade
(Fig. 4(b)), a random policy without a shield reaches the tar-
get approximately 1% of the time. Likewise, when the agent
attempts to learn a policy for Avoid, one locally optimal
but globally sub-optimal policy, which obtains an average
reward of−100 (global optimum of +991). With this policy,
which keeps the agent in the initial corner in the grid, the
agent stays outside of the adversary’s reachable space but
will not attempt to move to the goal at all. Similarly, the
unshielded random policy often reaches a highly negative
reward: e.g., 95% of the time in Obstacle (Fig. 4(f)). This
is a challenge for many RL agents: In Fig. 8, we illustrate
the problematic performance on the Intercept domain for a
variety of unshielded RL agents.

Shields enforce safety specifications. The shield ensures
that the agent stays within the winning region by preventing
it from taking actions that may result in reaching avoid states
or dead-ends. Indeed, we did not observe shielded agents
ever violating the safety specification.

Shields accelerate convergence. Shielded agents avoid
encountering avoid states on all episodes, and other episodes
are thus more frequent. Consequently, a shielded RL agent
has a higher probability of achieving the sparse reward. For
instance, in Obstacle, an unshielded random policy averages
approximately 12 steps before crashing. In contrast, the
shielded policy, which cannot crash, averages approximately
47 steps before reaching the goal. For RL agents that rely on
episodic training, such as REINFORCE, the shield greatly
improves the agent’s convergence rate, see Fig. 4(f).

Shields do not enforce reaching targets quickly. As a
drawback, shielding does not directly steer the agent towards
a positive reward. In environments like Evade, even with
the shield, the reward is particularly sparse, where a random
policy with unsafe actions shielded has only an 8% chance
of reaching the goal, as shown in Fig. 4(b). Thus it takes
many episodes before even collecting any positive reward.
Shielded agents do thus not alleviate the fact that episodes
may need to be long. In Fig. 5, we show that in Refuel,

0 1 2 3 4 5

·103

0

5

10

Number of episodes

A
ve

ra
ge

R
ew

ar
d

13
25
50
150

Figure 5: Variable episode maximum length for Refuel.

(a) Evade at t = 9 (b) Evade at t = 25

Figure 6: Incremental states of Evade where the agent (dark
blue square) has a belief set of states (shaded in pink). The
goal (green) is static. At t = 9, the shield prevents {south}
and the agent takes {east} and at t = 25, the shield prevents
{south, east} and the agent takes {scan}.

only when exploring sufficiently long episodes, the agent
converges towards an optimal policy. In this domain, the
agent must rely on the uncertain dynamics to reach the goal
without running out of fuel. Just before the possibility of
diverting to far from a recharge station, the shield enforces
backing up and recharging. It may require several attempts
before the agent reaches the goal.

Shields may have little effect on performance. For the
domain Evade in Fig. 4(b), the RL agent is only marginally
improved by the addition of the shield. In this domain,
the shield is much less restrictive, often not restricting the
agent’s choice at all. Such an example is illustrated in Fig. 6,
where the agent can easily either take an action that is just
as beneficial as the one that was restricted as in Fig. 6(a)
or reduce the uncertainty by taking a scan as in Fig. 6(b).
Further, in Evade, the shield is restricting the agent from
taking actions that result in collisions with a very low prob-
ability. When the unshielded agent takes these potentially
unsafe actions. it often does not suffer any negative outcome,
leading to similar values of average reward.

Shields can degrade performance. Back to Refuel, we
observe that for (very) short episodes, an unshielded agent
may perform better. The agent in Fig. 5 (red dashed) takes
the necessary “risk” of potentially running out of fuel and
using the uncertain dynamics to reach the goal under 13
steps in many (but not all) cases. This violates the safety
constraint, but the performance is better than when the
(shielded) agent never reaches the goal. This effect fades
out with increasing episode length, because the probability

(a) Obstacle at t = 2 (b) Obstacle at t = 3 (c) Obstacle at t = 4

Figure 7: Incremental states of Obstacle environment where
the agent (dark blue) handles uncertainty by maintaining a
belief set of states (shaded in blue). The goal (green) and
obstacles (red) are static. At t = 2 the agent takes south and
again at t = 3, which results in a collision at t = 4

that the dynamics turn out favorably increases over time.

Unsafe actions can have high average rewards. One of
the challenges of RL in partially observable environments
is handling a potentially ambiguous and conflicting set of
states. The agent must learn to distinguish states with similar
observations. This challenge is most evident in the Obstacle
domain. Consider the agent in Fig. 7, which could occupy
any one of the blue shaded states. At the agent’s position at
t = 2 in Fig. 7(a), estimated Q-values (from DQN) are
roughly (733, 784, 606, 687) for (west, south, north, east)
respectively. The unshielded RL agent in this situation is
willing to risk possible collision if the agent is in state x = 2
for the significant advantage gained by taking south for any
state in x = 1. Then, the agent collides with the obstacle at
(x = 3, y = 4), yielding a −1000 penalty. When the belief
support contains just the x = 2 states, the Q-values are
(499,−456,−417, 404), which indicates that the DQN al-
gorithm is struggling to account for high uncertainty. Shields
disable such actions and thus improve further convergence.

A belief-support state estimator can accelerate RL, but
a shield helps more. The challenge of RL agents strug-
gling with high uncertainty, as sketched in the previous
paragraph, can also occur when shielded. Again, in the Ob-
stacle domain, REINFORCE without the state estimation
(red) needs to learn both how to map the observation to the
possible states, and then also how this would map into a
value function, which it does only after spending roughly
2000 episodes. In comparison, with access to the belief sup-
port (blue), the agent quickly learns to estimate the value
function. Thus, even shielded, access to a state estimator
can help. Vice versa, a shield does significantly improve
agents, even if they have access to a state estimator.

Shielding is more effective on some RL agents than on
others. In Fig. 8, we compare how shielding benefits dif-
ferent learning methods for the Intercept domain. In this
example, all learning methods benefit from the shield. How-
ever, the DQN and DDQN struggle to converge to the opti-
mal policy. Such behavior could be the result of insufficient
data to properly process the state estimates from the shield.

0 0.2 0.4 0.6 0.8 1

·105

−1,000

0

1,000

Number of steps

A
ve

ra
ge

R
ew

ar
d

DQN
DDQN
PPO
SAC

Figure 8: Intercept with an RL agent performing different
learning methods. Each agent used the shield’s belief sup-
port as the input representation.

0 1 2 3 4 5

·103

−1,000

0

1,000

Number of episodes
A

ve
ra

ge
R

ew
ar

d

No Shield Shield
Hard Switch Smooth Switch

Figure 9: Obstacle with an RL agent that learns for the first
1000 episodes with the shield active. After 1000 episodes
the shield is either switched off completely (green) or is
slowly turned off with increasing probability (purple).

Shielding can bootstrap RL agents. In Fig. 9, we show
how an RL agent performs when it initially learns using a
shield and then that shield is either completely deactivated
after 1000 episodes (green) or is switched-off with a smooth
transition (purple). For the latter, we apply the shield with
probability p, where p starts at 1 and is reduced by the
learning rate α until p = 0. The RL agent that initially
learns to use the shield, generates higher quality episodes
and subsequently, when the shield is removed, the agent
still maintains higher quality rollouts since it has previously
experienced the sparse positive reward. The effect is even
more pronounced as the shield is gradually removed, where
the performance mirrors the shielded condition.

6 CONCLUSION AND FUTURE WORK

We presented an efficient open-source integration of model-
based shielding and data-driven RL towards safe learning
in partially observable settings. The shield ensures that the
RL agent never visits dangerous avoid-states or dead-ends.
Additionally, the use of shields helps to accelerate state-
of-the-art RL. For future work, we will investigate the use
of model-based distance measures to target states [Jansen
et al., 2020] or contingency plans [Pryor and Collins, 1996,
Bertoli et al., 2006] as an additional interface to the agent.

References

Mohammed Alshiekh, Roderick Bloem, Rüdiger Ehlers,
Bettina Könighofer, Scott Niekum, and Ufuk Topcu. Safe
reinforcement learning via shielding. In AAAI. AAAI
Press, 2018.

Piergiorgio Bertoli, Alessandro Cimatti, and Marco Pistore.
Towards strong cyclic planning under partial observability.
In ICAPS, pages 354–357. AAAI, 2006.

Maxime Bouton, Jesper Karlsson, Alireza Nakhaei, Kikuo
Fujimura, Mykel J. Kochenderfer, and Jana Tumova. Re-
inforcement learning with probabilistic guarantees for
autonomous driving. CoRR, abs/1904.07189, 2019.

Krishnendu Chatterjee, Martin Chmelík, Raghav Gupta, and
Ayush Kanodia. Qualitative analysis of pomdps with
temporal logic specifications for robotics applications. In
ICRA, pages 325–330. IEEE, 2015.

Krishnendu Chatterjee, Martin Chmelik, and Jessica Davies.
A symbolic sat-based algorithm for almost-sure reacha-
bility with small strategies in pomdps. In AAAI, pages
3225–3232. AAAI Press, 2016.

Petros Christodoulou. Soft actor-critic for discrete action
settings. CoRR, abs/1910.07207, 2019.

Murat Cubuktepe, Nils Jansen, Sebastian Junges, Ah-
madreza Marandi, Marnix Suilen, and Ufuk Topcu. Ro-
bust finite-state controllers for uncertain pomdps. In
AAAI, pages 11792–11800. AAAI Press, 2021.

Christian Dehnert, Sebastian Junges, Joost-Pieter Katoen,
and Matthias Volk. A storm is coming: A modern proba-
bilistic model checker. In Computer Aided Verification
(CAV), volume 10427 of LNCS, pages 592–600. Springer,
2017.

Klaus Dräger, Vojtech Forejt, Marta Z. Kwiatkowska, David
Parker, and Mateusz Ujma. Permissive controller synthe-
sis for probabilistic systems. Logical Methods in Com-
puter Science, 11(2), 2015.

Nathan Fulton and André Platzer. Safe reinforcement learn-
ing via formal methods: Toward safe control through
proof and learning. In AAAI. AAAI Press, 2018.

Javier Garcıa and Fernando Fernández. A comprehensive
survey on safe reinforcement learning. Journal of Ma-
chine Learning Research, 16(1):1437–1480, 2015.

Sergio Guadarrama, Anoop Korattikara, Oscar Ramirez,
Pablo Castro, Ethan Holly, Sam Fishman, Ke Wang,
Ekaterina Gonina, Neal Wu, Efi Kokiopoulou, Luciano
Sbaiz, Jamie Smith, Gábor Bartók, Jesse Berent, Chris
Harris, Vincent Vanhoucke, and Eugene Brevdo. TF-
Agents: A library for reinforcement learning in tensorflow.
https://github.com/tensorflow/agents, 2018.

Mohammadhosein Hasanbeig, Alessandro Abate, and
Daniel Kroening. Cautious reinforcement learning with
logical constraints. In AAMAS, pages 483–491. Interna-
tional Foundation for Autonomous Agents and Multia-
gent Systems, 2020.

Matthew J. Hausknecht and Peter Stone. Deep recurrent Q-
learning for partially observable MDPs. In AAAI, pages
29–37. AAAI Press, 2015.

Nils Jansen, Bettina Könighofer, Sebastian Junges, Alex Ser-
ban, and Roderick Bloem. Safe Reinforcement Learning
Using Probabilistic Shields (Invited Paper). In CONCUR,
volume 171 of LIPIcs, pages 3:1–3:16. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2020.

Dejan Jovanovic and Leonardo Mendonça de Moura. Solv-
ing non-linear arithmetic. In IJCAR, volume 7364 of
LNCS, pages 339–354. Springer, 2012.

Sebastian Junges, Nils Jansen, Christian Dehnert, Ufuk
Topcu, and Joost-Pieter Katoen. Safety-Constrained Re-
inforcement Learning for MDPs. In TACAS, 2016.

Sebastian Junges, Nils Jansen, and Sanjit A. Seshia. En-
forcing almost-sure reachability in pomdps. CoRR,
abs/2007.00085, 2020.

Sebastian Junges, Nils Jansen, and Sanjit A. Seshia. En-
forcing almost-sure reachability in pomdps. In CAV (2),
volume 12760 of LNCS, pages 602–625. Springer, 2021.

Leslie Pack Kaelbling, Michael L. Littman, and Anthony R.
Cassandra. Planning and acting in partially observable
stochastic domains. Artificial Intelligence, 101(1):99–
134, 1998.

Jens Kober, J. Andrew Bagnell, and Jan Peters. Reinforce-
ment learning in robotics: A survey. Int. J. Robotics Res.,
32(11):1238–1274, 2013.

Andrey Kolobov, Mausam, and Daniel S. Weld. A theory
of goal-oriented mdps with dead ends. In UAI, pages
438–447. AUAI Press, 2012.

Bettina Könighofer, Mohammed Alshiekh, Roderick Bloem,
Laura Humphrey, Robert Könighofer, Ufuk Topcu, and
Chao Wang. Shield synthesis. Formal Methods in System
Design, 51(2):332–361, 2017.

Adam Laud and Gerald DeJong. The influence of reward
on the speed of reinforcement learning: An analysis of
shaping. Technical report, 2003.

Omid Madani, Steve Hanks, and Anne Condon. On the un-
decidability of probabilistic planning and infinite-horizon
partially observable Markov decision problems. In AAAI,
pages 541–548. AAAI Press, 1999.

https://github.com/tensorflow/agents

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex
Graves, Ioannis Antonoglou, Daan Wierstra, and Mar-
tin A. Riedmiller. Playing atari with deep reinforcement
learning. CoRR, abs/1312.5602, 2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, An-
drei A. Rusu, Joel Veness, Marc G. Bellemare, Alex
Graves, Martin A. Riedmiller, Andreas Fidjeland, Georg
Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik,
Ioannis Antonoglou, Helen King, Dharshan Kumaran,
Daan Wierstra, Shane Legg, and Demis Hassabis. Human-
level control through deep reinforcement learning. Nature,
518(7540):529–533, 2015.

Teodor Mihai Moldovan and Pieter Abbeel. Safe explo-
ration in Markov decision processes. In ICML. icml.cc /
Omnipress, 2012.

Jan Peters and Stefan Schaal. Policy gradient methods for
robotics. In IROS, pages 2219–2225. IEEE, 2006.

Joelle Pineau, Geoff Gordon, and Sebastian Thrun. Point-
based value iteration: An anytime algorithm for pomdps.
In IJCAI, pages 1025–1032, 2003.

Amir Pnueli. The temporal logic of programs. In Founda-
tions of Computer Science, pages 46–57. IEEE, 1977.

Louise Pryor and Gregg Collins. Planning for contingencies:
A decision-based approach. J. Artif. Intell. Res., 4:287–
339, 1996.

Martin L. Puterman. Markov Decision Processes. John
Wiley and Sons, 1994.

Jean-François Raskin, Krishnendu Chatterjee, Laurent
Doyen, and Thomas A. Henzinger. Algorithms for omega-
regular games with imperfect information. Log. Methods
Comput. Sci., 3(3), 2007.

Ahmad El Sallab, Mohammed Abdou, Etienne Perot,
and Senthil Kumar Yogamani. Deep reinforcement
learning framework for autonomous driving. CoRR,
abs/1704.02532, 2017.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Rad-
ford, and Oleg Klimov. Proximal policy optimization
algorithms. CoRR, abs/1707.06347, 2017.

David Silver and Joel Veness. Monte-carlo planning in large
pomdps. In NIPS, pages 2164–2172. MIT Press, 2010.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez,
Laurent Sifre, George van den Driessche, Julian Schrit-
twieser, Ioannis Antonoglou, Vedavyas Panneershelvam,
Marc Lanctot, Sander Dieleman, Dominik Grewe, John
Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy P. Lilli-
crap, Madeleine Leach, Koray Kavukcuoglu, Thore Grae-
pel, and Demis Hassabis. Mastering the game of go with
deep neural networks and tree search. Nature, 529(7587):
484–489, 2016.

Trey Smith and Reid Simmons. Heuristic search value
iteration for POMDPs. In UAI, pages 520–527. AUAI
Press, 2004.

Richard S Sutton and Andrew G Barto. Reinforcement
Learning: An Introduction. MIT Press, 1998.

Fei Tao, He Zhang, Ang Liu, and Andrew Y. C. Nee. Dig-
ital twin in industry: State-of-the-art. IEEE Trans. Ind.
Informatics, 15(4):2405–2415, 2019.

Hado van Hasselt, Arthur Guez, and David Silver. Deep
reinforcement learning with double q-learning. In AAAI,
pages 2094–2100. AAAI Press, 2016.

Erwin Walraven and Matthijs Spaan. Accelerated vector
pruning for optimal pomdp solvers. In AAAI, pages 3672–
3678. AAAI Press, 2017.

Daan Wierstra, Alexander Förster, Jan Peters, and Jürgen
Schmidhuber. Solving deep memory pomdps with recur-
rent policy gradients. In ICANN, pages 697–706. Springer,
2007.

Ronald J. Williams. Simple statistical gradient-following
algorithms for connectionist reinforcement learning. Ma-
chine Learning, 8:229–256, 1992.

DATA APPENDIX

DOMAIN DESCRIPTIONS

Rocks Rocks is a variant of RockSample [Smith and Sim-
mons, 2004]. The grid contains two rocks which are either
valuable or dangerous to collect. To find out with certainty,
the rock has to be sampled from an adjacent field. The goal
is to collect a valuable rock (+10 reward), bring it to the
drop-off zone (+10), and not collect dangerous rocks (-10).

Refuel Refuel concerns a rover that shall travel from one
corner to the other (+10 reward), while avoiding an obsta-
cle on the diagonal. Every movement costs energy, and the
rover may recharge at dedicated stations to its full battery ca-
pacity, but neither action yields a reward or cost. Collisions
and empty battery levels terminate the episode. The rover
receives noisy information about its position and battery
level.

Evade Evade is a scenario where an agent needs to reach
an escape door (+10 reward) and evade a faster robot. The
agent has a limited range of vision (Radius), but may choose
to scan the whole grid instead of moving.

Avoid Avoid is a related scenario where an agent attempts
to reach a goal (+1000) in the opposite corner and keep a
distance from patrolling robots on fixed routes that move
with uncertain speed, yielding partial information about
their position. If being caught, the robot receives a reward
of (-1000). Furthermore, every step yields -1 reward.

Rocks
Episode Length 100
Grid-size 4

Refuel
Episode Length 100
Grid-size 6
Maximum energy level 8

Evade
Episode Length 350
Grid-size 6
Vision radius 2

Avoid
Episode Length 100
Grid-size 100
Vision radius 3

Intercept
Episode Length 100
Grid-size 7
Vision radius 1

Obstacle
Episode Length 1
Grid-size 100

Table 1: Constants and parameters for each environment in
experimental setups.

Intercept Contrary to Avoid, in Intercept an agent aims
to meet (+1000) a robot before that robot leaves the grid
via one of two available exits (-1000). The agent has a view
radius and observes a corridor in the center of the grid.
Movements are penalized with a reward of -1.

Obstacle Obstacle describes an agent navigating through
a maze (movement: -1) of static traps where the agent’s
initial state and movement distance is uncertain, and it only
observes whether the current position is a trap (-1000) or
exit (+1000).

HYPERPARAMETER SELECTION

Network parameters In this work we were mostly inter-
ested in comparing the effect of a shield on different RL
methods and domains. Consequently, we ensured that the
chosen hyperparameters were consistent between each ex-
periment. An extensive tuning for each method and domain
were outside the scope of this work. Consequently, we em-
ployed the default settings from the examples provided in
the tf-agents [Guadarrama et al., 2018] documentation with
one exception. For discrete SAC [Christodoulou, 2019], we
modify the tf-agents Guadarrama et al. [2018] implement to
handle discrete actions but also we added an LSTM layer in
the actor network, see Table 2. The hyperparameter values
for each learning setting are given in Tables 2 to 6

Actor Network Parameters
Hidden layers 3
Nodes per layer (400,300)
LSTM size 40
Activation function ReLu

Critic Network Parameters
Hidden layers 2
Nodes per layer 300
LSTM size 40
Activation function tanh

Training Parameters
Optimizer ADAM
Learning rate 3e− 2
Minibatch size 64
Discount γ 1
Importance ratio clipping 1
Target Update τ 0.05
Target Update Period 5

Other Parameters Evaluation Interval 1000
Evaluation Episodes 10

Table 2: Hyperparameters used in discrete soft actor-critic
(SAC) numerical experiments.

Q-Network Parameters
Hidden layers 1
Nodes per layer 100
Activation function None

Training Parameters
Optimizer ADAM
Learning rate 3e− 2
Minibatch size 64
Discount γ 1

Other Parameters Evaluation Interval 1000
Evaluation Episodes 10

Table 3: Hyperparameters used in deep Q-network
(DQN) and double Q learning (DDQN) numerical ex-
periments.

Q-Network Parameters
Hidden dense layers 2
Nodes per layer (50,20)
Activation function ReLu
LSTM layer size 15

Training Parameters
Optimizer ADAM
Learning rate 3e− 2
Minibatch size 64
Discount γ 1

Other Parameters Evaluation Interval 1000
Evaluation Episodes 10

Table 4: Hyperparameters used in deep recurrent Q-
network (DRQN) in memory comparison experiment.

Actor Network Parameters
Hidden layers 2
Nodes per layer (200,100)
Activation function tanh

Value Network Parameters
Hidden layers 2
Nodes per layer (200,100)
Activation function ReLu

Training Parameters
Optimizer ADAM
Learning rate 3e− 2
Minibatch size 64
Discount γ 1

Other Parameters Evaluation Interval 1000
Evaluation Episodes 10

Table 5: Hyperparameters used in proximal policy opti-
mization (PPO) numerical experiments.

Actor Network Parameters
Hidden layers 1
Nodes per layer 100
Activation function ReLu

Value Network Parameters
Hidden layers 1
Nodes per layer 100
Activation function ReLu
Value Est. Loss Coeff. 0.2

Training Parameters
Optimizer ADAM
Learning rate 3e− 2
Minibatch size 64
Discount γ 1

Other Parameters Evaluation Interval 100
Evaluation Episodes 10

Table 6: Hyperparameters used in deep REINFORCE
numerical experiments.

INPUT REPRESENTATION INSIGHTS

Input format The shield is more than just a state estimate.
In fact, even when we include as much information as pos-
sible, in the form of a vector that stacks the observation,
the belief-support state estimate and the action mask that a
shield would recommend, the shielded RL agent still outper-
forms its unshielded counterpart. In Figure 10, a shielded
RL agent with a simple observation representation (red)
vastly outperforms the unshielded, high-information agent
(dashed green).

Experience replay for POMDPs For the experience re-
play, we utilize the uniform sampled replay buffer with
a mini-batch size of 64. For DQN, DDQN, PPO and dis-
crete SAC we collect and train in step intervals and for
REINFORCE, we collect data as full episode runs. We also
conducted experiments where we gave the RL sequences
of observations as an input for training. This experience re-
play technique is explored in Hausknecht and Stone [2015],
where a RL agent with a DRQN can interpret partial infor-
mation from multiple observations in sequnce. With that
movitation we compared our discrete SAC agent (with its
LSTM memory cell) for different input lengths, see Fig-
ure 11.

Learning Methods Data In Figures 12 to 15, we show
the full set of experiments similar to Figure 4 in the paper
for REINFORCE.

0 1 2 3 4 5

·103

−1,000

0

1,000

Number of episodes

A
ve

ra
ge

R
ew

ar
d

Observation Belief Support
Observation + Belief Support + Action Mask

Figure 10: A comparison of three input representations
for an RL agent learning on Obstacle. The combined
representation (green) is an integer vector that contains
the information of both the observation vector (red), the
belief-support vector (blue) and the action mask at that
instant.

0 0.2 0.4 0.6 0.8 1

·105

−500

0

500

Number of episodes

A
ve

ra
ge

R
ew

ar
d 1 2 5 10

Figure 11: Intercept with an LSTM-based SAC agent
that interprets sequences of observations through the
use of a memory buffer. Each line represents a differ-
ent instance of how many sequential observations was
fed to each agent when learning. See Hausknecht and
Stone [2015] for a detailed analysis for the interplay
between partially observability and experience replay in
RL agents.

0 0.2 0.4 0.6 0.8 1

·105

0

5

10

Number of episodes

A
ve

ra
ge

R
ew

ar
d

Observation Belief Support Random Policy

0 0.2 0.4 0.6 0.8 1

·105

0

1

2

0 0.2 0.4 0.6 0.8 1

·104

0

5

10

0 0.2 0.4 0.6 0.8 1

·105

−500

0

500

1,000

Number of episodes
0 0.2 0.4 0.6 0.8 1

·105

0

500

0 0.2 0.4 0.6 0.8 1

·105

−1,000

−500

0

(a) Refuel (N=6, Energy=8) (b) Evade (N=6, Radius=2) (c) Rocks (N=4)

(d) Intercept (N=7, Radius=1) (e) Avoid (N=6, Radius=3) (f) Obstacle (N=6)

Figure 12: DQN performed with (solid) and without (dashed) a shield restricting unsafe actions. The red lines show when
the RL agent is trained using only the observations and the blue lines indicate when the RL agent is trained using some state
estimation in the form of belief support. The black lines are the average reward obtained by applying a random policy.

0 0.2 0.4 0.6 0.8 1

·105

0

2

4

6

8

Number of episodes

A
ve

ra
ge

R
ew

ar
d

Observation Belief Support Random Policy

0 0.2 0.4 0.6 0.8 1

·105

0

1

2

3

0 0.2 0.4 0.6 0.8 1

·105

0

5

10

15

0 0.2 0.4 0.6 0.8 1

·105

−500

0

500

1,000

Number of episodes
0 0.2 0.4 0.6 0.8 1

·105

0

500

0 0.2 0.4 0.6 0.8 1

·105

−1,000

0

1,000

(a) Refuel (N=6, Energy=8) (b) Evade (N=6, Radius=2) (c) Rocks (N=4)

(d) Intercept (N=7, Radius=1) (e) Avoid (N=6, Radius=3) (f) Obstacle (N=6)

Figure 13: DDQN performed with (solid) and without (dashed) a shield restricting unsafe actions. The red lines show when
the RL agent is trained using only the observations and the blue lines indicate when the RL agent is trained using some state
estimation in the form of belief support. The black lines are the average reward obtained by applying a random policy.

0 0.2 0.4 0.6 0.8 1

·105

0

2

4

Number of episodes

A
ve

ra
ge

R
ew

ar
d

Observation Belief Support Random Policy

0 0.2 0.4 0.6 0.8 1

·105

0

1

2

3

0 0.2 0.4 0.6 0.8 1

·105

0

5

10

15

0 0.2 0.4 0.6 0.8 1

·105

−500

0

500

1,000

Number of episodes
0 0.2 0.4 0.6 0.8 1

·105

−500

0

500

0 0.2 0.4 0.6 0.8 1

·105

−1,000

0

1,000

(a) Refuel (N=6, Energy=8) (b) Evade (N=6, Radius=2) (c) Rocks (N=4)

(d) Intercept (N=7, Radius=1) (e) Avoid (N=6, Radius=3) (f) Obstacle (N=6)

Figure 14: PPO performed with (solid) and without (dashed) a shield restricting unsafe actions. The red lines show when the
RL agent is trained using only the observations and the blue lines indicate when the RL agent is trained using some state
estimation in the form of belief support. The black lines are the average reward obtained by applying a random policy.

0 0.2 0.4 0.6 0.8 1

·105

0

2

4

Number of episodes

Observation Belief Support Random Policy

0 0.2 0.4 0.6 0.8 1

·105

0

1

2

3

0 0.2 0.4 0.6 0.8 1

·105

0

5

10

0 0.2 0.4 0.6 0.8 1

·105

−500

0

500

1,000

Number of episodes
0 0.2 0.4 0.6 0.8 1

·105

−400

−300

−200

−100

0 0.2 0.4 0.6 0.8 1

·105

−1,000

−500

0

500

(a) Refuel (N=6, Energy=8) (b) Evade (N=6, Radius=2) (c) Rocks (N=4)

(d) Intercept (N=7, Radius=1) (e) Avoid (N=6, Radius=3) (f) Obstacle (N=6)

Figure 15: Discrete soft-actor critic (SAC) with an LSTM architecture performed with (solid) and without (dashed) a shield
restricting unsafe actions. The red lines show when the RL agent is trained using only the observations and the blue lines
indicate when the RL agent is trained using some state estimation in the form of belief support.

	Introduction
	Problem Statement
	POMDPs
	Safety Constraints

	State Estimators and Shields
	Beliefs and belief supports
	Shields
	Safety Guarantees

	Shields and RL in POMDPs
	Safety during learning
	Safety after learning
	RL convergence speed
	Learning from the shield

	Experiments
	Results

	Conclusion and Future Work

