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From Model Checking to Probabilistic Model Checking

!2

General scheme from model checking

Model Checking

Model Property

Answer
yes/no/        dd                

Given a model,  
is the probability

to eventually reach a  
dangerous state 

above a threshold?

Given a model, 
 exists a path  

to eventually reach a 
dangerous state?

Given a model, 
 give a path  

that eventually reaches a 
dangerous state?

Given a model,  
what is the probability
to eventually reach a  

dangerous state?

Probabilistic

probabilities

“Reachability”
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Markov Models: Kripke Structures with Probabilities
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Knuth-Yao Die
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In every state, flip a coin
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1
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Final states: die outcomes
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Plan for today

!4

3 Parts. Let’s see how far we get. 

Why Probabilistic Model 
Checking

Basics of Probabilistic Model 
Checking

Current Topics in Probabilistic 
Model Checking

Take home: 


Probabilistic model checking on Markov models =  graph-algorithms + equation system solving
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Why probabilities?

!5

• Systems include randomization to solve more tasks,


• or tasks more efficiently.


• Stochastic processes can be an adequate abstraction of complex processes


• either technical, in nature, or both.

Randomisation is everywhere

• Methods require to actually compute numbers, which is often hard, but


• humans are bad in reasoning under uncertainty, so automatic reasoning is helpful.

mailto:sjunges@berkeley.edu
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Distributed computing

!6

Randomization is required to break symmetries
Exponential backoff in Wifi
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Probabilistic Program Inference

!7

Analysing Posteriors of (discrete) Probabilistic Programs

The Relevance of Probabilities

Duelling Cowboys [McIver and Morgan, 2005]

Joost-Pieter Katoen What, Why, and How of Probabilistic Verification 11/38

The Relevance of Probabilities
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The Relevance of Probabilities

Survivor Probability

Claim: cowboy A wins the duel with probability at least (1−b)⋅aa+b−a⋅b
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The Relevance of Probabilities

Survivor Probability

Claim: cowboy A wins the duel with probability at least (1−b)⋅aa+b−a⋅b

Joost-Pieter Katoen What, Why, and How of Probabilistic Verification 12/38

The Relevance of Probabilities

Probabilistic Programming

2013, DARPA launched a 48M (US dollar) program on

“Probabilistic Programming (PP) for Advanced Machine Learning (ML)”

“PP is a new programming paradigm for managing uncertain information.
By incorporating it into ML, we seek to greatly increase the number of people

who can successfully build ML applications,
and make ML experts radically more effective”.

Joost-Pieter Katoen What, Why, and How of Probabilistic Verification 9/38
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Fault Tree Analysis

!8

The Prominent Reliability Engineering Model

Given a system failure, what are its root causes  
in terms of component faults 

Fault tree analysis

Dynamic Fault Trees allow for typical but complex 
state-dependent failure propagation 

 
Spare management, sequential failures

Quantitative Analysis: Given failure rates of the 
components, what is the mean time to failure, or the 

probability of mission success

The Relevance of Probabilities

Reliability Engineering

Joost-Pieter Katoen What, Why, and How of Probabilistic Verification 13/38

NASA US NRC
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Stochastic Job Scheduling

!9

Schedule N independent jobs to  M servers, where the 
mean job duration is given by random variables

Stochastic Job Scheduling

Inverse of expected 
 execution times

• How do we optimize expected execution time (easy), probability of finishing K jobs 
before a deadline (hard), or both (harder)?

mailto:sjunges@berkeley.edu
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Job Scheduling Example

!10

State based model for 4 Jobs and 2 Servers

The Relevance of Probabilities

Stochastic Model

Joost-Pieter Katoen What, Why, and How of Probabilistic Verification 26/38
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Markov Population Models

!11

Prominent Model in Epidemiology, Social Networks, and Chemical Reactions

SIS Model. From Grossman, Bortolussi: https://arxiv.org/pdf/1906.11508.pdf

mailto:sjunges@berkeley.edu
https://arxiv.org/pdf/1906.11508.pdf


All these systems can be modelled with Markov models 
and we are always interested in reaching some configurations
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Why probabilities?

!13

• Systems include randomization to solve more tasks


• or tasks more efficiently


• Stochastic processes can be an adequate abstraction of complex processes


• Either technical, in nature, or both

Randomisation is everywhere

• Methods require to actually compute numbers, which is often hard, but


• humans are bad in reasoning under uncertainty, so formal reasoning is helpful
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Plan for today

!14

3 Parts. Let’s see how far we get. 

Why Probabilistic Model 
Checking

Basics of Probabilistic Model 
Checking

Current Topics in Probabilistic 
Model Checking
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Markov Models

!15

Overview

Discrete Time Continuous Time

No 
Nondeterminism DTMC CTMC

Nondeterminism MDP IMC/CTMDP
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Discrete-time Markov Chains (DTMCs)

!16

Formal Definition

DTMC

P : S → Distr(S)Transitions

States
Initial distribution

S

ι ∈ 𝖣𝗂𝗌𝗍𝗋(S)

Consider transitions as a transition matrix      
with probabilities as entries

Or just an initial state

P(s, s′�)
P

• We may add atomic propositions and a (state)labelling to define sets of states
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Reachability in DTMCs

!17

Sum over all paths

s1

s1

s3 s4

s2 s5

s6 s7

1
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1
2

1
2

1
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s2 s4

s1 s2 s3 s2 s4

s1 s2 s3 s2 s3 s2 s4

s1 s2 s3 s2 s4(        )*

Paths Probability

Algorithmic Foundations

Reachability Probabilities

Problem statement
Consider a MC with finite state space S , s ∈ S and G ⊆ S .

Aim: determine Pr(s ⊧ ◇G) = Prs{π ∈ Paths(s) ∣ π ⊧ ◇G }
Characterisation of reachability probabilities

▸ Let variable xs =Pr(s ⊧ ◇G) for any state s
▸ if G is not reachable from s, then xs = 0
▸ if s ∈ G then xs = 1

▸ For any state s ∈ Pre∗(G) ∖G :

xs = ∑
t∈S∖G

P(s, t) ⋅ xt
)*****************************************+******************************************,

reach G via t ∈ S ∖G
+ ∑

u ∈G
P(s, u )

)**********************+**********************,
reach G in one step

Joost-Pieter Katoen What, Why, and How of Probabilistic Verification 5/63
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Reachability in DTMCs

!18

Characterization

 Reachability in DTMCs

 Let x(s) denote the probability to reach some target state from s. It holds that:


• If s is a target state: 
 

• If there is no path from s to some target state: 
 

• Otherwise: 
 
  x(s) = ∑

s′�∈S

P(s, s′�) ⋅ x(s′�)

x(s) = 0

x(s) = 1

• Notice that these equations together have a unique solution

mailto:sjunges@berkeley.edu
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Reachability in DTMCs

!19

Example Equation System

s1

s3 s4

s2

1
2

1
2

1
2

1
2

1
2

1
2

1
2 1

2

s5

s6 s7

1
2

1
2

1
2

1
2

1
2

1
2

s5s5

x2 =
1
2

⋅ x3 +
1
2

⋅ x4

x4 =
1
2

⋅ x− +
1
2

⋅ x−

x3 =
1
2

⋅ x− +
1
2

⋅ x2

x1 =
1
2

⋅ x2 +
1
2

⋅ x5

What is the probability to reach the red state?

x− = 0
x− = 0

x5 = 0x− = 1
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Reachability in DTMCs

!20

Characterization

 Reachability in DTMCs

 Let x(s) denote the probability to reach some target state from s. It holds that:


• If s is a target state: 
 

• If there is no path from s to some target state: 
 

• Otherwise: 
 
  x(s) = ∑

s′�∈S

P(s, s′�) ⋅ x(s′�)

x(s) = 0

x(s) = 1

• Notice that these equations together have a unique solution
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Long-run behavior and repeated reachability

!21

Elementary property
 Long-run Theorem

The set of all states in a terminal strongly connected component 

is reached with probability one.  

In a terminal strongly connected component, 

each state is visited infinitely often with probability one 

For repeated reachability (globally eventually target set):


• Determine the terminal SCCs


• Consider those that contain at least one target state


• Determine the probability to reach these SCCs
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Towards LTL Properties I

!22

Automata Based Model Checking

Example: What is the probability for [. ]  
after throwing Heads initially, and throwing no more than two Tails total?

s1

s3 s4

s2 s5

s6 s7

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
6

1
6

1
6

1
6

1
6

1
6

All missing transitions go to a sink state!

q1 q3q2
Init H T/-

H/-

q4 q5

H/-

T/-

H/-

q1

Label all states with init, heads, tails
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Product Construction

s1

s3 s4

s2 s5

s6 s7
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s1q2

s2q3

Towards LTL Properties II

s4q3

s3q4

s2q4

s3q5

s2q5

X

X

s4q4

X

X

X

X

q1 q3q2
Init H T/-

H/-

q4 q5

H/-

T/-

H/-

q1s4q5

1
2

1
2 1

2

1
2

1
2

1
2 1

2

1
2 1

2

1
2

1
2

1
2 1

2

1
2 1

2

X

1
2

1
2

1
2
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LTL?

!24

• LTL formula ϕ describes set of infinite words [[ϕ]],


• [[ϕ]] is omega-regular


• We aim for a product construction. Nondeterministic automata are tricky…


• There exists a deterministic Rabin automaton (DRA) that accepts [[ϕ]].

From finite automata to omega-regular finite automata

mailto:sjunges@berkeley.edu
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Deterministic Rabin Automata

!25

• A deterministic Rabin automaton (DRA) is a finite automaton with acceptance sets:


• A run is accepting iff there exists an index i such that:  
States in      are visited only finitely often and some state in      is visited infinitely often.

q1 q2

¬a

¬a a a

ℱ = {(F0, K0)}, F0 = {q1} K0 = {q2}

This automaton accepts ‘eventually globally a’:

 There is no deterministic Büchi 
Automaton that accepts this language.

ℱ = {(F1, K1), . . . , (Fn, Kn)}

Fi Ki

mailto:sjunges@berkeley.edu
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LTL model checking

!26

Product automaton and repeated reachability

 Model checking Omega-regular properties

For a finite DTMC       with state s and a DRA     :


Where       is the union of accepting terminal SCCs in  
A terminal SCC is accepting iff 

for some i it contains no Li and some Ki state 
 
 

𝖯𝗋𝒟(s ⊧ 𝒜) = 𝖯𝗋𝒟⊗𝒜(⟨s, q⟩ ⊧ ◊U)

𝒟 𝒜

U 𝒟 ⊗ 𝒜

LTL Model checking: Build a DRA, take the product, find the accepting terminal SCCs 
by means of graph algorithm, solve reachability with a linear equation system

mailto:sjunges@berkeley.edu
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Beyond Reachability and LTL

!27

• Expected rewards: 
“What is the expected energy consumption?”


• Long-run average: 
“What are the expected costs of operation, in the long run”


• Cost-bounded reachability: 
“What is the probability that we arrive without an empty battery”


• Conditional reachability: 
“What is the probability that we reach the airport, when we also visit the train station”


• PCTL 

Further properties

mailto:sjunges@berkeley.edu
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Markov Models

!28

Overview

Discrete Time Continuous Time

No 
Nondeterminism DTMC CTMC

Nondeterminism MDP IMC/CTMDP
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Markov decision processes

!29

Markov chains with nondeterminism

s

u

t
Act a

Act b

0.5

0.2

0.3

0.3

0.5
0.2

Act b

Act a
action choices, 

interleaving due to concurrency
v

0.5

1

0.5

1

Act a

Actions 𝖠𝖼𝗍

P : S × 𝖠𝖼𝗍 → Distr(S)

MDP

Transitions

States
Initial distribution

S

𝖣𝗂𝗌𝗍𝗋(S)
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Policies

!30

• Positional (or stationary or Markov or memoryless)

Or Schedulers, Strategies, Adversaries

• Deterministic

Resolve the nondeterminism:


Map histories on distributions over actions: States* → Distr(Actions)

States* → Actions

States → Distr(Actions)

mailto:sjunges@berkeley.edu
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Induced MC

!31

Applying a policy to an MDP

s

u

t
Act a

Act b

0.5

0.5

0.3

0.5
0.2

Act b

Act a
v

0.5

1

0.5

1

Act a

0.5

s st

su

ss
sst

ssu

suu suuu

stu

stv

stuu

Policy: alternate Act a and Act b

sstv

ssuu

…

…

…

States are paths in the MDP: 
Generally countably infinite MC 

•  𝖯𝗋σ
ℳ (s ⊧ ◊G) = 𝖯𝗋ℳ[σ] (s ⊧ ◊G)

0.2

0.3

0.5

0.5

0.5

0.5
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Positional policies suffice for reachability

!32

Essential simplification

s

u

t
Act a

Act b

0.5

0.5

0.3

0.5
0.2

Act b

Act a
v

0.5

1

0.5

1

Act a

 Max Reachability in MDPs

For any finite MDP and with target set     :

There exists a positional policy    s.t. for any state s:

 
 

σ

𝖯𝗋σ
ℳ (s ⊧ ◊G) = sup

σ′�∈Σ
𝖯𝗋σ′�

ℳ (s ⊧ ◊G)

G

• Thus, we can talk about the  
maximum reachability

Adaption for min reachability exists 
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Reachability in MDPs

!33

Bellman Equations

 Max Reachability in MDPs

 Let x(s) denote the maximal probability to reach some target state from s. 

It holds that:


• If s is a target state: 
 

• If there is no path from s to some target state: 
 

• Otherwise: 
 
  x(s) = max

a∈𝖠𝖼𝗍 ∑
s′ �∈S

P(s, a, s′�) ⋅ x(s′�)

x(s) = 0

x(s) = 1

• Notice that these equations together have a unique solution

Adaption for min reachability exists 
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Bellman equations

!34

Example

s

u

t
Act a

Act b

0.5

0.5

0.3

0.5
0.2

Act b

Act a
v

0.5

1

0.5

1

Act a

xs = max{0.5 ⋅ xs + 0.3 ⋅ xu + 0.2 ⋅ xt, 0.5 ⋅ xt + 0.5 ⋅ xu}
xt = max{1 ⋅ xv, 0.5 ⋅ xv + 0.5 ⋅ xu}

xv = 1
xu = 0
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Reachability in MDPs

!35

• Linear Program (LP) 
(next slide)


• Value iteration (VI)  
(guess a solution to the Bellman equations, apply Bellman equations, repeat)


• Policy iteration (PI) 
(guess a positional policy, solve MC, change policy where improvements are possible)


• Linear Program is the only polynomial time method. VI and PI are fastest in practice.

Three solution methods

mailto:sjunges@berkeley.edu
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Reachability in MDPs

!36

Formulation as a linear program

xs ≥ 0.5 ⋅ xs + 0.3 ⋅ xu + 0.2 ⋅ xt

xt ≥ 1 ⋅ xv

xv = 1
xu = 0

min xs

xs ≥ 0.5 ⋅ xt + 0.5 ⋅ xu

xt = 0.5 ⋅ xv + 0.5 ⋅ xu

s

u

t
Act a

Act b

0.5

0.5

0.3

0.5
0.2

Act b

Act a
v

0.5

1

0.5

1

Act a
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LTL

!37

• As with Markov chains:


• Long run theorem (requires an adaption of SCCs)


• Construct automaton and cross product


• Optimal policy depends on state in the product

With MDPs

Algorithmic Foundations

What About LTL?

Consider the MDP:

Positional policy Sα always chooses α in state s0
Positional policy Sβ always chooses β in state s0. Then:

Pr
Sα

(s0 ⊧ ◇a ∧ ◇b) = Pr
Sβ

(s0 ⊧ ◇a ∧ ◇b) = 0.

Now consider the policy Sαβ which alternates between selecting α and β.
Then:

Pr
Sαβ

(s0 ⊧ ◇a ∧ ◇b) = 1.

Joost-Pieter Katoen What, Why, and How of Probabilistic Verification 28/63
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Markov Models

!38

Overview

Discrete Time Continuous Time

No 
Nondeterminism DTMC CTMC

Nondeterminism MDP IMC/CTMDP
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Some facts

Algorithmic Foundations

Negative Exponential Distribution

Density of exponential distribution

The density of an exponentially distributed r.v. Y with rate λ ∈ R>0 is:

fY (x) = λ⋅e−λ⋅x for x > 0 and fY (x) = 0 otherwise

The cumulative distribution of r.v. Y with rate λ ∈ R>0 is:

FY (d) = ∫ d

0
λ⋅e−λ⋅x dx = [−e−λ⋅x]d0 = 1 − e−λ⋅d.

The rate λ ∈ R>0 uniquely determines an exponential distribution.

Variance and expectation

Let r.v. Y be exponentially distributed with rate λ ∈ R>0. Then:
Expectation E [Y ] = 1

λ and variance Var[Y ] = 1
λ2

Joost-Pieter Katoen What, Why, and How of Probabilistic Verification 31/63

Algorithmic Foundations

Exponential Distribution Functions

The higher the rate λ, the faster the cdf approaches 1.

Joost-Pieter Katoen What, Why, and How of Probabilistic Verification 32/63

Exponential distributions
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Continuous-time Markov Chains

!40

Two equivalent views

t 

u 

s 

v

DTMC + exit-rate function r(s)

1
4

1
2

1
2

1
4

254

1 1

1 1

t 

u 

s 

v

25
4

4
2

4
2

75
4

1 1

DTMC with transition rate matrix R(s,s’) = P(s,s’)r(s)  
 instead of transition probabilities P(s,s’)
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CTMC Semantics

!41

Essential probabilities

• Probability to leave state s within t time:


• Probability to move from s to s’ between now and time t:

R(s,s')
r(s)

⋅ (1 − e−r(s)⋅t)

∫
t

0
r(s) ⋅ e−r(s)⋅xdx = 1 − e−r(s)⋅t

mailto:sjunges@berkeley.edu
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Timed reachability

!42

What is the probability to reach a state within T time:

t 

u 

s 

v

1
4

1
2

1
2

3
4

254

1 1

1 1

xu(τ) = 0 xv(τ) = 1

xs(τ) = ∫
τ

0

75
4

⋅ e−25⋅x ⋅ xt(τ − x)dx + ∫
τ

0

25
4

⋅ e−25⋅x ⋅ xv(τ − x)dx

xt(τ) = ∫
τ

0

4
2

⋅ e−4⋅x ⋅ xs(τ − x)dx + ∫
τ

0

4
2

⋅ e−4⋅x ⋅ xu(τ − x)dx
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Reachability properties

!43

• What is the probability of eventually reaching some set of states?


• What is the expected time to reach some set of states?


• What is the expected fraction of time in some set of states? 
 
Solution: Calculate on the embedded DTMC

Two types

• What is the probability of eventually reaching some set of states 
within T time. 
 
System of ODE equations —  
Solve via a technique called uniformization 1

1) Baier et al., Model Checking Algorithms for continuous-Time Markov Chains, TSE 2003 
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Markov Models
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Overview

Discrete Time Continuous Time

No 
Nondeterminism DTMC CTMC

Nondeterminism MDP IMC/CTMDP
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Plan for today

!45

3 Parts. Let’s see how far we get. 

Why Probabilistic Model 
Checking

Basics of Probabilistic Model 
Checking

Current Topics in Probabilistic 
Model Checking
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Beyond Markov Chains

!46

A Zoo of Models

DTMCLTS 
Kripke StructureCTMC

IMC MDP/PA

Markov Automaton

CTMDP

Timed automata (TA)

PTA

Hidden  
Markov 
 Models

POMDP

POPTA
Stochastic games

POSG
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Tools for probabilistic model checking

!47

• Various Domain Specific Languages as Input


• Common Language: JANI (easy for machines, hard for humans)

Various modern and mature (but academic) tools

• QComp: Competition for most prominent model checking tasks

Prism: 

+ GUI 
+ JAVA binary for major platforms 
+ Extension to games

Modest: 

+ Extensive language 
+ Discrete event simulation 
+ Combination of hybrid and stochastic

Storm: 

+ Performance 
+ Docker container 
+ Python API

Try them out!
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Probabilistic Model Checking vs Model Checking
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• Bisimulations, Simulations, Partial Order Reduction, CEGAR, CEGIS, … 
 

(almost) all ideas from this lecture have been applied in the context of probabilistic model checking

Some paths just do not matter 
 that much…. Counterexamples are more complex objects 

 (sets of paths) 

0.45

0.45

0.1

Not relevant to show that green 
states are reached with a 
probability less than 0.5

Counterexample to red state is 
reached with high probability 
contains all paths to red state
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Multi-objective Model Checking

!49

• Optimal policies use memory and randomisation


• Performant implementations use reachability analyses in a loop. 

Pareto front

I Illustrate possible trade-offs between objectives
I E.g., for 12 jobs and 3 processors:

(2.8, 0.5)

(2.9, 0.7)

achievable

not achievable

2.6 2.7 2.8 2.9 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Expected completion time

Pr
ob

.6
jo

bs
w

ith
in

1
ho

ur

Multi-objective Model Checking

Sebastian Junges RWTH Aachen University Markov Automata with Multiple Objectives 3/33

Recall:
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Parameter Synthesis

!50

‘Symbolic probabilities’

s1

s3 s4

s2 s5

s6 s7

p

pp

q q

1�q 1�q

1�p

1�p 1�p 1�p1�p

p

p

• Probabilities unknown, use some symbolic values instead


• For what values does the Markov chain satisfy some property?
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Some more current research topics

!51

• Variations to interval iteration: sound value iteration, optimistic value iteration, …….


• Cost-bounded model checking, risk-bounded model checking


• Extensions to stochastic games, equilibria, …


• Extensions to partial observation models


• Connections to exact inference, Bayesian networks, …


• Connections to model counting


• Connections to reinforcement learning techniques

A very long list….
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Want to know more?

!52

Contact me at sjunges@berkeley.edu
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